Question Paper

Exam Date & Time: 22-Dec-2022 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

THIRD SEMESTER B.TECH. (ELECTRONICS AND COMMUNICATION ENGINEERING) EXAMINATIONS - DECEMBER 2022 SUBJECT : MAT 2152 ENGINEERING MATHEMATICS III

Marks: 50 Duration: 180 mins.

Answer all the questions.

Expand
$$f(x) = x - x^2, -\pi \le x \le \pi$$
, $f(x + 2\pi) = f(x)$ as a Fourier series. (4)

Find the half range sine series for the function
$$f(x) = x(\pi - x)$$
, $0 < x < \pi$. (3)

Find the Fourier transform of
$$f(x) = \begin{cases} 0 & x < a \\ 1 & a < x < b \\ 0 & x > b \end{cases}$$
 (3)

Prove that
$$u = e^{-x}(x \cos y + y \sin y)$$
 is a harmonic function. Hence find f(z) (4)

If
$$u(x, y)$$
 and $v(x, y)$ are harmonic functions in a domain D, then prove that
$$\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) + i \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)$$
 is analytic in D. (3)

Find Fourier cosine transform of
$$f(x) = (x^{a-1})$$
, where $0 < a < 1$.

Using Cauchy's residue theorem, evaluate
$$\int_C^{\Box} \frac{e^{zz}}{(z+1)(z-2)} dz$$
, where C is the circle $|z|=3$.

Evaluate
$$\int_{c}^{\Box} (z+z^2) \, dz$$
 along the straight line from the point 1- i to 2+3i.

Find the Laurent's series expansion of the function
$$f(z) = \frac{1}{(z+1)(z+2)^2} \text{ in the region } 2 < |z-1| < 3.$$

Verify Green's theorem for $\oint_{\mathcal{C}}^{\square} (2xy + y^2) dx + x^2 dy$, where C is the boundary of the region defined by y = x and $y = x^2$.

For any scalar function
$$\phi$$
, prove that $\operatorname{curl}(\operatorname{grad} \phi) = 0$.

If
$$F=2yi-zj+xk$$
, evaluate $\oint_{\mathcal{C}}^{\square}F$. dR along the curve
$$x=\cos t, y=\sin t, z=2\cos t \quad \text{from } t=0 \ \text{ to } t=\pi/2.$$

Solve the partial differential equation
$$xu_{xy} = yu_{yy} + u_y$$
 using the (4)

Page 1 of 2

transformation v = x, z = xy.

- Assuming the most general solution, Solve the heat equation $u_t=25u_{xx}$, $0 \le x \le 80^{-(3)}$ subjected to $u(x,0)=\sin\frac{3\pi\,x}{40}$ and u(0,t)=0, u(80,t)=0.
- Use divergence theorem to evaluate $\iint_S^{\square} F \cdot n \ ds$ where $F = 4xzi y^2j + yzk$ and S is the surface of the cube bounded by the region x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

-----End-----