Exam Date & Time: 22-Dec-2022 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

THIRD SEMESTER B.TECH END SEMESTER EXAMINATIONS, DEC 2022 ENGINEERING MATHEMATICS III [MAT 2153]

Marks: 50

1)

Answer all the questions.

Duration: 180 mins.

А

Section Duration: 180 mins

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

$$\text{Expand} f(x) = \begin{cases} 2-x, & 0 < x < 4\\ x-6, & 4 < x < 8 \end{cases}, f(x+8) = f(x) \\ \text{And hence show that} \end{cases}$$

$$\text{A)} \qquad \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots = \frac{\pi^2}{8}.$$

$$(4)$$

B) Obtain the half range Fourier cosine series expansion of f(x) = x(l-x), 0 < x < l. Also sketch the corresponding periodic extension of f(x). (3)

C)	Obtain the first harmonics in the Fourier series of y, where y is given by	
	x: 0 1 2 3 4 5	
	y: 4 8 15 7 6 2	(3)

2)

. Find all possible series expansion of the function $f(z) = \frac{1}{(z+1)(z+3)}$ in the region (i) $|z| < 1, \quad (ii) \ 1 < |z| < 3, \quad (iii) \ |z| > 3$ (4)

B) Find an analytic function
$$f(z)$$
, given $u - v = (x - y)(x^2 + 4xy + y^2)$ (3)

C) Find the Fourier transform of $f(x) = \begin{cases} 1, & |x| \le a \\ 0, & |x| > a > 0 \end{cases}$. Hence deduce that $\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}.$ (3)

3) Verify Cauchy's integral theorem for $\int_C z^2 dz$ where C is the triangle joining the points (4) 0, 2 and 2i.

Evaluate
$$\int_{C} \frac{e^{z}}{z(z^{2}-3z+2)} dz$$
 where $C: |z| = 3$ using Cauchy's residue theorem. (3)

- C) Find the acute angle between the surfaces $xy^2z = 3x + z^2$ and $3x^2 y^2 + 2z = 1$ at (1, -2, 1). (3)
- 4) Show that $\vec{F} = (2xy + z^3)\hat{\imath} + x^2\hat{\jmath} + 3xz^2\hat{k}$ is a conservative force field. Find the scalar potential and the work done in moving an object in this field from (1, -2, 1) to (4) (3, 1, 4).
 - B) Prove that $\vec{A} = r^n \vec{r}$ is irrotational. Find n when it is also solenoidal. (3)
 - C) $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x \text{ using direct integration, given that } u=0 \text{ when } t=0 \text{ and } \frac{\partial u}{\partial t} = 0$ (3)

5)

A)

B)

Verify Green's theorem in plane for $\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where C is the boundary of the region defined by x = 0, y = 0 and x + y = 1. (4)

- Evaluate using Gauss divergence theorem, $\oint_S \vec{A} \cdot \hat{n} \, ds$ where $\vec{A} = (2x - y)\hat{i} - 2y\hat{j} - 4z\hat{k}$ and S is the surface of the region bounded by x = 0, y = 0, z = 0, z = 3 and $x^2 + y^2 = 16$ lying in the first octant. (3)
- C) . Solve the partial differential equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ using the transformation v = x + ct, w = x - ct subject to the conditions $u(x, 0) = \varphi(x)$ and $u_t(x, 0) = \psi(x)$. (3)

-----End-----