III SEMESTER B.TECH SEMESTER EXAMINATION, December, 2022

SUBJECT: LINEAR ALGEBRA and LOGIC (MAT 2163)

REVISED CREDIT SYSTEM

Time: 3 Hours Date: 22/12/2022 MAX. MARKS: 50

Instructions to Candidates

Answer ALL the questions.

Q.No	Question	Marks	CO	BL
1A	Determine whether the following system is consistent. If so, compute its general solution and identify the free and basic variables $x_1-x_2-3x_3+x_4=-2\\-2x_1+2x_2+6x_3=-6\\3x_1-2x_2-8x_3+3x_4=-7$	4	1	2,3
1B	Find the change of variable $x=Py$ that transforms the quadratic form $Q(x): {x_1}^2 - 5{x_2}^2 - 8x_1x_2$ into y^TDy . Classify the quadratic form.	3	3	3,4
1C	Find the basis for the null space of a matrix $A = \begin{bmatrix} 2 & 0 & 1 & 0 \\ -8 & 3 & 5 & -6 \\ 0 & 1 & 3 & -2 \\ 0 & 1 & -3 & 2 \end{bmatrix}$.	3	1	2,3
2A	The input-output matrix for an economy producing transportation, food and oil is given by Trans Food Oil [0.2 0.20 0.3] Trans [0.4 0.30 0.1] Food [0.2 0.35 0.3] Oil (a) What is the net production corresponding to a gross production of \$40 million of transportation, \$30 million of food, and \$35 million of oil? (b) What gross production is required to satisfy exactly a demand for \$32 million of transportation, \$48 million of food, and \$24 million of oil?	4	1	4,5
2B	Suppose a particle is moving in a planar force field and its position vector X(t) satisfies $x'(t) = Ax(t)$ and $x(0) = x_0$ where $A = \begin{bmatrix} 4 & -5 \\ -2 & 1 \end{bmatrix}$ and $x_0 = \begin{bmatrix} 2.9 \\ 2.6 \end{bmatrix}$. Solve this initial value problem for $t \ge 0$.	3	3	3

2C	Show that the propositional formula $p \rightarrow (q \rightarrow r)$ logically	3		
	equivalent to $(p \land q) \rightarrow r$ using truth table or laws of logic.		4	2
3A	Find the singular value decomposition of $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$	0.5		
3B	Find a basis for a subspace $V = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in R^3 : x_1 - 3x_2 + 5x_3 = 0 \right\}$. Show that $\left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix} \right\}$ is basis for the subspace V.	0.5	1	3
3C	Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation such that $T\left(\begin{bmatrix} -1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix}$ and $T\left(\begin{bmatrix} 0 \\ 2 \end{bmatrix}\right) = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix}$. Determine $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right)$.	0.5	1	3
4A	Let $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$, $v_4 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ and $y = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$. If possible, write y as an affine combination of v_1, v_2, v_3 and v_4 .	0.5	2	2,3
4B	Find the QR factorization of the matrix $A = \begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{bmatrix}$	3	3	3,4
4C	Let V be an inner product space. For a unit vector u and any vector $v \in V$, the projection $P_u(v)$ of v onto the line is defined as $P_u(v) = < v, u > u. \text{ Prove that } d(P_u(v), v) \leq d(\alpha u, v) \text{ for any } \alpha \in R$	3	2	3,4
5A	Show that the following statements constitute a valid argument using laws of predicate calculus. "If there was a football game, then traveling was difficult. If they arrived on time, then travelling was not difficult. They arrived on time. Therefore, there was no football game".	4	4	2,3,4
5B	Show that $(\exists x)M(x)$ follows logically from the premises $(\forall x)[H(x) \to M(x)]$ and $(\exists x)H(x)$.	3	5	3,4
5C	Let W be the subspace of R^5 spanned by $u=\begin{pmatrix}1\\2\\3\\-1\\2\end{pmatrix}$ and	3	2	2,3
	$v = \begin{pmatrix} 2 \\ 4 \\ 7 \\ 2 \\ -1 \end{pmatrix}$. Find a basis for the orthogonal complement of W.			