Question Paper

Exam Date & Time: 13-Dec-2022 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

THIRD SEMESTER B.TECH. (ELECTRONICS AND COMMUNICATION ENGINEERING) EXAMINATIONS - DECEMBER 2022 SUBJECT : ECE 2154 - NETWORK ANALYSIS

Marks: 50 Duration: 180 mins.

Answer all the questions.

1A) Consider the circuit of Figure. 1A.

(4)

- a. Determine the current in the load resistor, RL using the Superposition theorem.
- b. Verify that the superposition theorem does not apply to power.

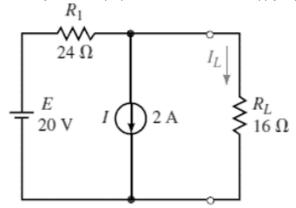


Figure. 1A

1B) Convert the voltage source of Figure 1B. into a current source and verify that the current, IL, through the load is the (3) same for each source.

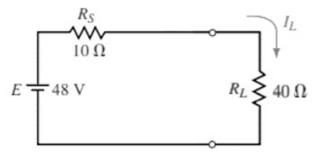
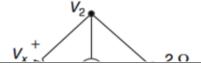
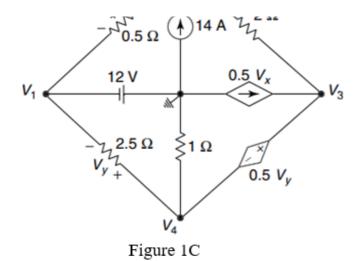




Figure 1B

1C) (3)

For the network shown in Figure 1C., Find v_1 , v_2 , v_3 and v_4 .

2A) In the network shown in Figure 2A, the switch is closed at t = 0, with zero capacitor voltage and zero inductor

Solve for v_1 , v_2 and dv_2/dt at $t = 0^+$.

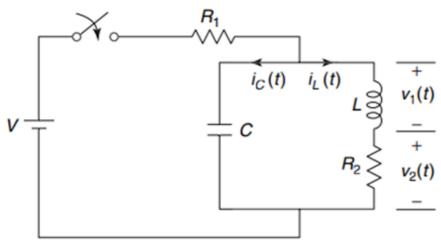
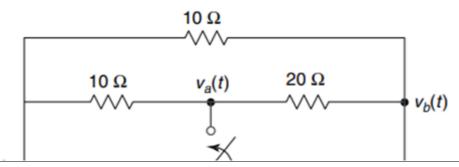



Figure 2A

2B) In the network shown in Figure 2B, a steady state is reached with the switch open. At t = 0, the switch is closed. (3) For the element values given, determine the values of

 $V_a(0^-), V_a(0^+), V_b(0^-)$ and $V_b(0^+)$.

(4)

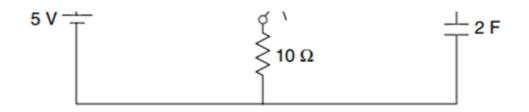


Figure 2B

In the network shown in Figure 2C, find $v_o(t)$ if i(0) = 5 A and v(t) = 0. (3)

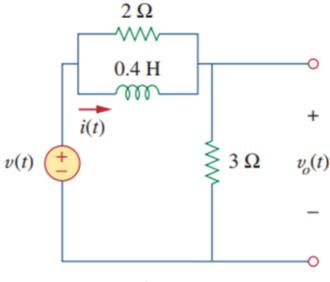


Figure 2C

- A symmetrical square wave of amplitude $\pm 5V$ and frequency 3kHz is impressed on an RC low pass circuit. If R = (4) 6kΩ and C = 0.2μF, calculate and plot the steady state output with respect to time.
- 3B) A pulse of 10V amplitude and duration 1ms is applied to a high pass RC circuit with R = $20k\Omega$ and C = 0.7μ F. Plot (3) the output waveform to scale and calculate the percent tilt in the output.
- 3C) A symmetrical square wave whose average value is zero has a peak-to-peak amplitude of 25V and a period of 4 μ s. This waveform is applied to a circuit whose upper 3dB frequency is $1/2\pi$ MHz. Calculate and sketch the steady state output waveform. In particular what is the peak to peak output amplitude.
- For the network shown in the Fig. 4A, the switch is closed at t = 0. Determine the current i(t) assuming zero initial (4) conditions using Laplace Transform.

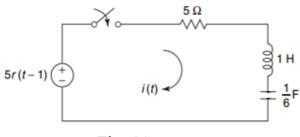
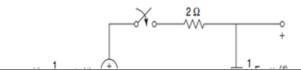



Fig. 4A

For the network shown in the Fig. 4B, find the response $v_0(t)$ using Laplace Transform. (3)

4C) For the network shown in the Fig. 4C, determine the current i(t) when the switch is closed at t=0 with zero initial conditions using Laplace Transform.

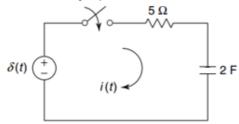
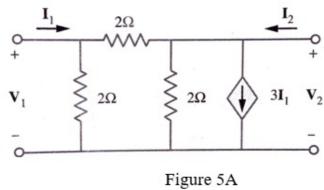



Fig. 4C

5B)

5A) Find the y parameters for the circuit shown in Figure 5A.

3.7

Find the network function $\frac{v_2}{v_1}$ for the network shown in Figure 5B.

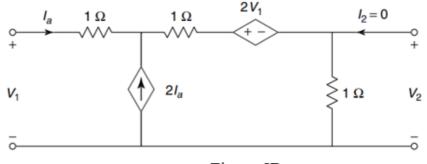


Figure 5B

5C) Derive the expression for z parameters in terms of y parameters. (3)

----End----

(4)

(3)