

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, DECEMBER 2022

ELECTRICAL CIRCUIT ANALYSIS [ELE 2153]

REVISED CREDIT SYSTEM

Time:	3	Hrs.
-------	---	------

Date: 19 December 2022

Max. Marks: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.
- **1A.** Apply a suitable network theorem approach for the circuit shown and hence determine the value of 'R' that will cause current ' i_b ' to be 2mA.

(04)

(02)

(04)

(05)

1B. The circuit model for a photovoltaic cell is given in the figure below. The current $i_{s'}$ is proportional to the solar insolation (kW/m^2) . Compute the value of load resistance $R_{L'}$ to yield maximum power transfer from solar cell to load.

1C. Obtain the output response of an LTI system for the excitation $x(t) = e^{-t}u(t)$. The LTI system has the impulse response given as below.

$$h(t) = \begin{cases} 1; & 0 \le t \le 1 \\ 0; otherwise \end{cases}$$

Use convolution integral approach.

2A. Apply the signal transformation technique to obtain a desired signal for certain application given by

y(t) = 2x(-2t + 3) + 3. ;Given x(t) as below.

ELE 2153

4B.

- **2C.** Analyse from fundamentals, whether the given LTI system is causal or not. The impulse response of LTI system is $h(t) = \delta(t+2)$. Justify your answer.
- **3A.** A parallel RLC circuit with $R = 5\Omega$, L = 1mH and $C = 10\mu$ F is excited by a current source of 10 u(t). Find the voltage across the capacitor using time domain analysis (04)
- **3B.** Find the Laplace transform of the waveform shown in Figure.

- **3C.** A special generator has a voltage waveform given by equation $v(t) = te^{-t}$ where 't' is time in seconds and $t \ge 0$. This generator is connected to a RL series circuit where $R = 2\Omega, L = 1H$ at time t = 0 by the closing of a switch. Obtain the equation of the current as a function of time i(t).
- **4A.** Analyse the given voltage waveform for its spectral co-efficients and hence plot the magnitude and phase spectrum. Use trigonometric Fourier series technique.

coefficients of the given signal

 $x(t) = 1 + \sin\omega_o t + 2\cos\omega_o t + \cos(2\omega_o t + \frac{\pi}{4})$

Where ω_o' is the fundamental frequency.

4C. Obtain and sketch the Fourier transform of Dirac delta function.

Find the exponential Fourier series representation and Fourier

(05)

(03)

(02)

(02)

(03)

(03)

(03)

- **5A.** The following measurements were made on a two port resistive network. With 10mV applied to port 2 and port 1 open, the current into port 2 is $0.25\mu A$ and the voltage across port 1 is $5\mu V$. With port 2 short circuited and 50mV applied to port 1, the current into port 1 is $50\mu A$ and the current into port 2 is 2mA. Compute the h - parameters of the network.
- **5B.** Find the y parameters for the given two-port network. Also determine the current in a 5 Ω resistor connected to the output port if a 10A current source is connected to the input of the two port.

(03)

(02)

5C. Compute the transmission parameters of the network by considering the circuit to be an interconnection of three two ports as shown in Figure below.

(05)