Reg. No.

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKE UP SEMESTER EXAMINATIONS, JANUARY 2023

ELECTROMAGNETIC THEORY [ELE 2155]

REVISED CREDIT SYSTEM

ime: 3 I	lours Date: 20 th JANUARY 2023 Max	. Marks: 5		
nstructio	ns to Candidates:			
*	Answer ALL the questions.			
*	Missing data may be suitably assumed.			
1A.	Consider a vector $\overline{H} = \left(\frac{A}{\rho}\right) a_{\emptyset}$, where A is a constant and ρ is the radius of the cylinder. From the fundamental concepts, show the involved steps in transforming the vector \overline{H} to it equivalent in spherical coordinate system.	(03)		
18.	A unit normal vector from region-2 $(\mu = 3\mu_0)$ to region-1 $(\mu = \mu_0)$ is defined as $a_{n21} = \frac{(4a_x + 4a_y - 2a_z)}{6}$. If $\overline{H}_1 = (20a_x + 2a_y + 12a_z)A/m$, and $\overline{H}_2 = (H_{2x}a_x - 5a_y + 4a_z)A/m$, estimate the following parameters: • H'_{2x} • surface current density K on the interface. • The angles \overline{B}_1 and \overline{B}_2 make with the normal.	(03)		
1C.	Let $D = 6xyz^2a_x + 3x^2z^2a_y + 6x^2yza_z C/m^2$. Find the total charge lying within the region bounded by $x = 1$ and 3; $y = 0$ and 1; $z = -1$ and 1 by separately evaluating each side of the divergence theorem.	(04)		
2A.	With a neat diagram, explain and derive the expression for the induced electro motive force in a circuit that is in motion in a time varying magnetic field.	(03)		
2B.	With a neat diagram, derive a suitable expression for the self-inductance of a coaxial cable of inner radius "a" and outer radius "b" if the space between the inner conductor and outer conductor is filled with an inhomogeneous material having $\mu = 2\mu_0/(1 + \rho)$.			
2C.	From the fundamentals, with a neat sketch, prove that, as per Poynting's theorem, the net power flowing out of a given volume is equal to the time rate of decrease in the energy stored within that volume minus the ohmic losses.	(04)		
3A.	A toroidal core has an average radius of 10 cm with a cross sectional radius of 1 cm. If the core was made of steel ($\mu_R = 1000$) and the coil wound on it has 200 turns, calculate the amount of current that should flow to produce a magnetic flux of 0.5 <i>mWb</i> in the core.	(03)		

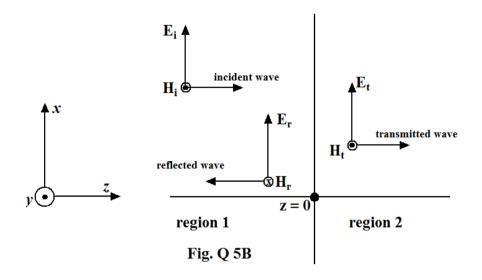
- **3B.** Let $\overline{E} = (1000a_x + 400a_z)e^{-j10y} V/m$ for a 250 *MHz* uniform plane **(03)** wave propagating in a perfect dielectric. If the maximum amplitude of the magnetic field intensity is 3 *A/m*, determine the following:
 - a) Relative permittivity of the dielectric
 - b) Relative permeability of the dielectric
 - c) $\overline{E}(x, y, z, t)$

3C. A lossy dielectric is characterized by $\varepsilon_R = 2.5$, $\mu_R = 4$ and $\sigma = 10^{-3}S/m$ **(04)** at 10 *MHz*. For a uniform plane wave propagating along the positive z-axis in the dielectric (having propagation constant = γ) at the said frequency, let $\overline{E} = 20e^{-\gamma z}a_x V/m$ at z = 0. Determine:

a)	Attenuation	b)	Phase	c)	Wave velocity
	constant		constant		
d)	Wavelength	e)	Intrinsic impedance	f)	$\bar{E}(2,3,4,t=10ns)$

- **4A.** From the basic concepts of Maxwell's equations, derive the wave equations **(03)** along with expressions for its attenuation and phase constants for a uniform plane wave travelling in a linear, homogenous, charge free lossy dielectric medium
- **4B.** In a medium ($\sigma = 0$; $\mu = 50\mu_0$; $\varepsilon = 4\varepsilon_0$), an electromagnetic wave is characterized by its \overline{E} field as $\overline{E} = 20\sin(10^8t \beta z)a_y V/m$. Determine the following: **(03)**
 - Wave number
 - The *H* field
 - Wave velocity

4C. In a non-magnetic medium, $\overline{E} = 4 \operatorname{Sin} (2\pi \times 10^7 \mathrm{t} - 0.8 \mathrm{x}) a_z V/m.$ **(04)**


- Find ε_r , η
- The time average power carried by the wave
- The total power crossing $100cm^2$ of plane 2x + y = 5
- **5A.** A uniform plane wave in air is normally incident on an infinite lossless dielectric **(03)** material having $\varepsilon = 3\varepsilon_0$ and $\mu = \mu_0$. If the incident wave is $E_i = 10 \cos(\omega t z) a_y V/m$

Find

- The incident H_i field
- The reflection and transmission coefficients
- The total electric field in both regions
- 5B. For a uniform plane wave propagating along the positive z-axis as shown (03) in Fig. Q 5B, assuming both the mediums to be perfect dielectrics, for a normal incidence, prove with appropriate explanations that:

a)
$$E_{ro}/E_{io} = \Gamma = \frac{\left[\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}\right]}{\left[\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}\right]}$$

b) $H_{to}/H_{io} = \tau = \frac{\left[2\sqrt{\varepsilon_2}\right]}{\left[\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}\right]}$

5C. In free space $(z \le 0)$, a plane wave with $H_i = 10 \cos(10^8 t - \beta z) a_x mA/m$ is incident normally on a lossless medium ($\varepsilon = 2\varepsilon_0, \mu = 8\mu_0$) in region $z \ge 0$. Determine the expressions for the reflected wave H_r, E_r as well as the transmitted wave H_t, E_t .

