Exam Date & Time: 27-Jan-2023 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

THIRD SEMESTER B.TECH END SEMESTER MAKE-UP EXAMINATIONS, JAN2023 **ENGINEERING MATHEMATICS III [MAT 2151]**

Marks: 50

1)

2)

3)

Duration: 180 mins.

A Answer all the questions. Section Duration: 180 mins Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed $y^{\prime\prime} - y^{\prime} - xy = 1$ $y(0) = 1 \quad y(1) = 5$ given that taking h = 0.25 using finite Solve • (4) difference method. A) Obtain the solution of the partial differential equation $u_x + u_y = 2(x + y)u$, by the B) (3) method of separation of variables. If $\vec{A} = xz^3 \hat{\imath} - 2x^2 yz \hat{\jmath} + 2yz^4 \hat{k}$. Find at (1,-1,1) C) i. $\nabla . \vec{A}$ (3) ii. $\nabla \cdot (\nabla \times \vec{A})$ Verify Green's theorem for the integral $\oint_C (y - sinx) dx + cosx dy$, where C is the triangle with vertices (0,0), $(\frac{\pi}{2}, 0)$ and $(\frac{\pi}{2}, 1)$. (4) A) Find the Fourier cosine Transform of $f(x) = \begin{cases} x & : 0 < x < 1\\ 2-x & : 1 < x < 2\\ 0 & : x > 2 \end{cases}$ B) (3) Solve the partial differential equation $u_{xx} + u_{yy} = -81x^2y^2$ by finite difference method C) with u(0,y) = u(x,0) = 0 and u(1,y) = u(x,1) = 100 with $h = \frac{1}{3}$. (3) (4) A)

$$f(x) = \begin{cases} 1 + \frac{2x}{\pi} & -\pi \le x \le 0\\ 1 - \frac{2x}{\pi} & 0 \le x \le \pi \end{cases}$$

Find the Fourier series of

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} \dots \dots \dots$$

Hence deduce that

B)
Solve
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
; $0 < x < 1$; $t > 0$ for 2-time steps by Crank-Nicolson's method with
 $h = \frac{1}{4}$; $u(x, 0) = 100(x - x^2), u(0, t) = u(1, t) = 0.$ (3)

...

C) $\sum_{\text{Expand}} f(x) = 1 - \frac{x}{l}, \quad 0 < x < l \text{ as a Fourier Sine series. Also draw the graph of the corresponding periodic extension of f(x).}$ (3)

4) Evaluate
$$\iint_{S} \vec{A} \cdot n \vec{dS}$$
, where $\vec{A} = 18zi - 12j + 3yk$ and S is the part of the plane $2x + 3y + 6z = 12$ in the first octant. (4)

B) Solve
$$z_{xy} = sinx siny_{\text{for which}} z_y = -2siny_{\text{when}} x = 0$$
, and $z = 0_{\text{if}} y$ is
an odd multiple of $\frac{\pi}{2}$. (3)

C) Obtain Fourier series for the function
$$f(t) = \frac{1}{4}(\pi - t)^2$$
; $0 \le t \le 2\pi$, $f(t + 2\pi) = f(t)$. (3)

5)

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}; 0 < x < 1; t > 0$$

$$h = 0.25$$
Solve
for 4-time steps with
subject to
$$u(x,0) = 100(x - x^2), \frac{\partial u}{\partial t}(x,0) = 0; u(0,t) = u(1,t) = 0$$
(4)

B) Find the directional derivative of $f(x, y, z) = x^2 - y^2 + 2z^2$ at the point p(1,2,3) in the direction of the line PQ where Q is the point (5, 0, 4). Also find the magnitude of the maximum directional derivative. (3)

-----End-----