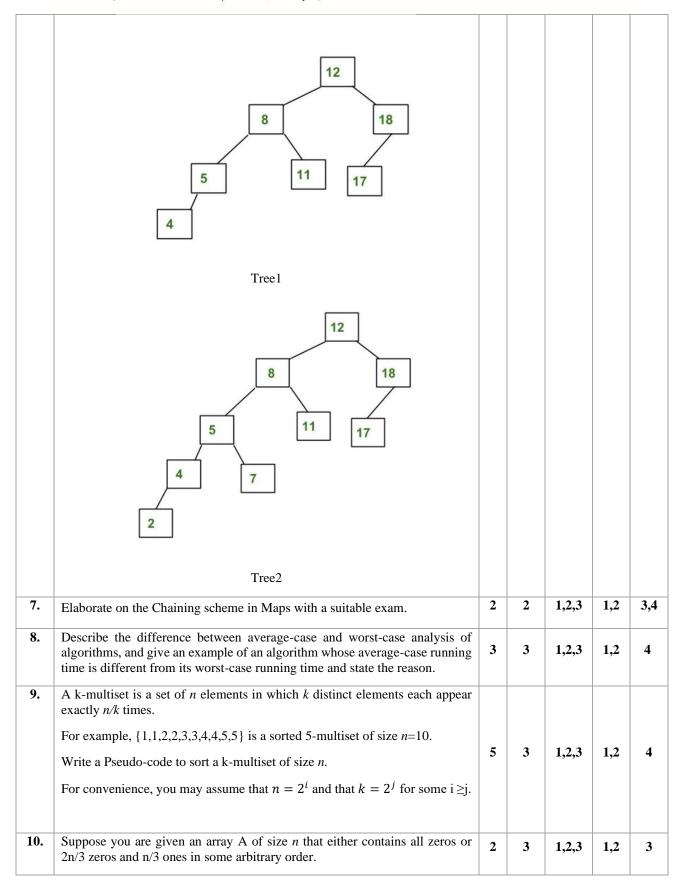


III SEMESTER B.TECH. END SEMESTER EXAMINATION DECEMBER 2022

SUBJECT: DATA STRUCTURES AND ALGORITHMS [MTE 2151]

Date of Exam: 19/12/2022 Time of Exam: 02:00 PM – 05:00 PM Max. Marks: 50

Instructions to Candidates:


✤ Answer ALL the questions & missing data may be suitably assumed

Q.N O.	QUESTION	М	СО	РО	LO	BL
1.	Illustrate the Enqueue and Dequeue operations on a Queue.	2	1	1,2	1,2	4
2.	Convert $(234)_{10}$ into binary and present the process of conversion using a Stack.	3	1	1,2	1,2	3,4
3.	Develop an algorithm for the removal of the Node 4 in the first singly linked list to result into the second singly linked list as illustrated in the figure below. $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$	5	2	1,2,3	1,2	6
4.	Create an algorithm to find the sum of all the elements in an array of size 10.	2	2	1,2,3	1,2	6
5.	Compute the time complexity of the code snippet given below. int $a = 0$; for (i = 0; i < N; i++) { for (j = N; j > i; j) { a = a + i + j; }	3	2	1,2,3	1,2	4
6.	Which of the following trees has an imbalance (Tree1/ Tree2)? Perform balancing on the trees if any.	5	2	1,2,3	1,2	4

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

	Give an exact lower bound in terms of n (not using asymptotic notation) on the worst-case running time of any deterministic algorithm that is tasked to determine whether A contains any ones.					
11.	 Consider the problem of searching for genes in DNA sequences using Horspool's algorithm. A DNA sequence consists of a text on the alphabet {A, C, G, T} and the gene or gene segment is the pattern. a. Construct the shift table for the following gene segment of your chromosome 10: TCCTATTCTT b. Locate the above pattern in the following DNA sequence: TTATAGATCTCGTATTCTTTTATAGATCTCCTATTCTT 	3	4	1,2,3	1,2	4
12.	 For the input 30, 20, 56, 75, 31, 19 and hash function h(K) = K mod 11 a. Construct the open hash table (chaining mechanism). b. Find the largest number of key comparisons in a successful search in this table. c. Find the average number of key comparisons in a successful search in this table. 	5	4	1,2,3	1,2	4
13.	Deduce the shortest path from A to J using the A* algorithm. The weights along the edges are costs incurred for traversing the edge and the weight along the nodes represents the heuristics of the corresponding node.	2	5	1,2,3	1,2	4
14.	Compute the shortest path from Node A to Node F using the Dijkstra's algorithm	3	5	1,2,3	1,2	4

	iven onnec		-				epres	ents	water	and	represents land, and				
T	he be	elow	imag	e hig	hligh	its wa	ater i	n blu	ie an	d lar	I in gray in a 10 \times				
									-		in the below matrix.				
T	hey a	re ma	ırked	by th	e nui	nbers	s 1–5	in tł	ne im	age b	low.				
	1		2				3	3	3	3					
	-		2		2		3	3	9	9					
	2	2	2	2	2		3								
	2	2	2	2		3	5						_		
	2	2	2	2		5		5	5	5		5	5	1,2,3	1,2
	2	2	2	2			5	5	5	5					
		2		2		5	5	5	5	5					
				4		5	5	5	5						
	4		4	4	4		5	5	5						
		4		4	4				. r.						
	4	4	4	4				5	5	5					