III SEMESTER B.TECH. MAKE UP EXAMINATION JANUARY 2023

SUBJECT: DATA STRUCTURES AND ALGORITHMS [MTE 2151]

Max. Marks: 50

Instructions to Candidates:

❖ Answer ALL the questions & missing data may be suitably assumed

Q.N O.	QUESTION	M	СО	PO	LO	BL
1.	Illustrate the POP and PUSH operations on a Stack.	2	1	1,2	1,2	4
2.	Illustrate the process of converting a decimal number into an octal number and further how a stack may be employed for the same purpose.	3	1	1,2	1,2	3,4
3.	Develop an algorithm for insertion in a doubly linked list using Tail pointer.	5	2	1,2,3	1,2	6
4.	Develop an algorithm to find the product of all the elements in an array of size 5	2	2	1,2,3	1,2	6
5.	Compute the time complexity of the code snippet given below.					
	int $a = 0$;					
	for $(i = 0; i < N; i)$ {					
	for $(j = N; j > i; j++)$ {	3	2	1,2,3	1,2	4
	STATEMENTS;					
	}					
	}					
6.	Create an AVL tree with the nodes 10, 25, 4, 56, 89, 37, 92	5	2	1,2,3	1,2	6
7.	Elaborate on the Chaining scheme in Maps with a suitable example	2	2	1,2,3	1,2	3,4
8.	Describe the difference between average-case and worst-case analysis of algorithms.	3	3	1,2,3	1,2	4
9.	Perform Merge sort and Heap sort on the elements 10, 25, 4, 56, 89, 37, 92	5	3	1,2,3	1,2	4
10.	What are the deciding factors for computing the complexity of an algorithm. Discuss in brief	2	3	1,2,3	1,2	1
11.	Perform a search operation for the pattern 'MIT' in the text 'WELCOME TO MIT' using Rabin Karp algorithm	3	4	1,2,3	1,2	4
12.	For the input 30, 20, 56, 75, 31, 19 and hash function $h(K) = K \mod 10$, construct the open hash table (chaining mechanism).	5	4	1,2,3	1,2	4

13.	Deduce the shortest path from S to C using the A* algorithm.					
	a 3 c 10 e 5 d 6	2	5	1,2,3	1,2	4
14.	Compute the shortest path from Node A to Node E using the Dijkstra's algorithm.	3	5	1,2,3	1,2	4
15.	Perform Breadth First Search on the graph shown below.	5	5	1,2,3	1,2	4