	Reg. No.									
MANIPAL INSTITUTE OF TECHNOLOGY										
MANIPAL	IT Martin I)									

DEPARTMENT OF MECHATRONICS ENGINEERING III SEMESTER B.TECH. (MECHATRONICS) END SEMESTER EXAMINATIONS, December 2022

SUBJECT: DIGITAL SYSTEM DESIGN [MTE 2152]

10/12/2022

Time: 3 Hours

MAX. MARKS: 50

Instructions to	Candidates:
-----------------	--------------------

✤ Answer ALL the questions.

Q. No		Μ	CO	РО	LO	BL
1A.	Implement the given function $f(A, B, C, D) = \overline{A}\overline{D} + \overline{C}\overline{D} + A\overline{C}D + AC\overline{D}$. i. Using only NAND gates. ii. Using only NOR gates.	4	1	1, 3	1, 2, 3	3
1B.	Obtain a minimal SOP expression using QM method for the following equation. $F(A, B, C, D) = \sum m(1, 2, 3, 4, 10, 11, 12, 14) + d(5, 15)$	4	1	1, 3	1, 2, 3	3
1C.	Using 74283 develop a 4 bit Binary to Excess 3 code converter	2	2	1, 3	1, 2, 3, 5	3
2A.	Implement the four Boolean functions listed below using three half adder circuits. $D = A \oplus B \oplus C$ $E = \overline{A}BC + A\overline{B}C$ $F = AB\overline{C} + (\overline{A} + \overline{B})C$ $G = ABC$	4	2	1, 3	1, 2, 3	3
2 B .	Implement full subtractor using 2 to 4 decoder and residual gates	3	2	1, 3	1, 2, 3, 5	3
2C.	A mux-based circuit is given in the Fig. 2C . Analyze the circuit and find the expression of Z0, Z1 and Z2.	3	2	1, 2	1, 2, 3	3

4B.	Design a 4 bit Fibonacci counter using T flipflop that counts the sequence starting from 0001 till 1101 and then repeats from 0001.	3	3	1, 2, 3	1, 2, 3, 5	6
4C.	Design an asynchronous counter that counts from 3 to 9 and then restarts from 3.	2	3	1, 2, 3	1, 2, 3, 5	3
5A.	Design a sequence generator using IC74194 for the sequence 0,8,12,6,13,11,7,3,1,0	4	3	1, 2, 3	1, 2, 3, 5	6
5B.	Write a Verilog code along with expected output for the problem statement mentioned. A sequential circuit has eight states that are coded into three bits in binary counting order. Besides clock, the machine has 2 inputs, reset, and enable and one output "done". The machine should go to state 0 whenever reset is asserted. When reset is negated, it should move to the next number only if the enable is asserted. However, once it reaches 8 th state, it should stay there unless the reset is again asserted. The done output should be high if and only if the machine is in 8 th state and enable is asserted. (State the assumptions clearly in case if any)	4	5	1, 2, 3	1, 2, 3, 5	6
5C.	Write a Verilog code to implement a 4:16 decoder using 2:4 decoder only	2	5	1, 2, 3	1, 2, 3, 5	6