DEPARTMENT OF MECHATRONICS III SEMESTER B. TECH (MECHATRONICS)

END SEMESTER EXAMINATION [Dec] [2022]

Subject: Microcontroller-Based System Design

Subject Code: MTE 2153

Date: 13-12-2022

Time: 3 Hours Exam Time: 2:30-5:30 PM MAX. MARKS: 50

Instructions to Candidates:

Answer ALL the questions.

Missing data may be suitably assumed and justified.

Q. No	Question	M	CO	PO	LO	BL
1A	Traction control unit is an active vehicle safety feature designed to help vehicles while moving on the slippery surface. The wheel slip makes the tires spin quickly on the surface without gaining the grip so that the vehicle does not accelerate. Traction control activates when it senses the slip, and controls the vehicle. Traction control uses the following components; wheel speed sensors to monitor the rotation of all four wheels; a hydraulic modulator that pumps the brakes; and an ECU to direct the pumps based on speed sensor inputs. Identify the modules that aid to detect the speed of the wheels and control the brake pressure if MSP432 is employed in the ECU. Also, mention the industry standards to be complied with.	4	1	2,6	2,5	4
1B	An Automotive Industrial plant has 14 industrial robots working in a synchronized way i.e., each robot can operate in its own workspace. The entire job shop is protected with a metal cage for human safety. The cage has only one door with a laser sensor module for counting the people. One day, the sensor counted 10 humans entering the job for maintenance and on exit door, 9 people have come out, while the display counter showed 10 due to hardware fault, and the control engineer started the operation. The human left behind was accidentally hit by an industrial robot. The human is in critical condition and the onboard safety inspector calls for an inspection of the electronics safety system. As a safety engineer and representative of the Government, address the above case and generate the report addressing the workmen's compensation act 1923 for Industrial accidents with legal actions of violations. Also, address IEC standards for electrical safety measures as a future guideline for the industry.	4	1	6	2,5	4

MTE 2153 Page 1 of 7

1C	The Embedded design process involves the sequence of operations carried out starting from the requirement of the customer to product development. The main purpose of a requirement document is to aid as an agreement between the developer and the customer describing what the system will do. This agreement can become a legally binding contract. Write the document involving every step of the embedded design process so that it is easy to read and understand by others. It should be unambiguous, complete, verifiable, and modifiable and involve the industry standards to be met.										2 1	7		13	4
2A	Compare process.	Гimer32	, Timer A	A, and V	Vatchdo	og Timer	in the	e embedde	d de	sign	3 3	3 1,	2	1,2	4
2B	Develop an Embedded C code to move the robot as per the description using the Timer A0 module. Consider a 3-wheeled robot with 2 rear wheels and one castor wheel. Timer A0 is used for driving the rear wheels using a PWM signal. Generate 70% duty cycle using outmode 7 for PWM signal on P2.4 in the up count mode. This is fed to the left motor through the L293N driver circuit. Similarly, generate a 30% PWM signal on P2.5 to feed the right motor. Draw the neat waveform of the TA0R count value, PWM signal from P2.5, and P2.4. Infer, the direction of the robot when the above PWM signal is fed to the robot. Use SMCLK clock with 3 MHz										6				
Bits	settings.	9-8		7-6	5-	4		2		1		0			
TIMER_	_A y- >CTL	TASS	EL	ID	MC			TACLR		TAI	E	TAI	FG		
TIMER_A	A_CTL_ XX _X	00-TA 01-AC 10-SM 11-IN	CLK ICLK,	00-/1 01=/2 10=/4 11=/8	, 0 ' 0 10-	0- stop, 1- up continu up/down	ous,	0- clea		1-en time inte		1-ti flag		verflo	W
Bits		15-14	13-12	11	10	8	7-5		4		3	2	1	0	
TIMER_A	y->CCTL	CM	CCIS	SCS	SCCI	CAP	OUT	MOD	CCI	E	CCI	OUT	COV	CCIF	'G
TIMER_	A_CCTLN_ XX		00- CCInA, 01- CCInB, 10-GND,	Synchr	Observ	e 1-	000- 001- togg 011- set/ 100- 101- togg 111-	output, set, 010- le/reset, reset, toggle, reset, le/set,	1-en	able	Capture			Set f captu in captu mode Set i compa is tr in compa mode	f re re
8	Timer_			_IRQn				Handler						CCIF	
9	Timer_A0 TAO_N_IRQn TAO_N_IRQHandler						TP	AOCCF	1-6,	TAI	FG				

MTE 2153 Page 2 of 7

2C	Develop an Embedde on the sensor input. A is at 2 meters from the beep sound. The free provides less value generating the square	3	3	1,3	1,2,5	6				
3A							4	1,3	1,2,5	6
TII	Bits 7 6 5 3-2 1 0 TIMER32_y- >CONTROL TIMER32_CONTROL_XX_ 0-disable 0-free runnin g mode, 1-periodic 1- enable of the prescription of the presc									
Т	25 Timer32 INT1 T32 INT1 IRQn T32 INT1 IRQHandler 26 Timer32 INT2 T32 INT2 IRQn T32 INT2 IRQHandler TIMER32 y->LOAD Load register TIMER32 y->INTCLR Clear flag TIMER32 y->VALUE Check the counter value									
3B	Summarise the func	•	requiremen	ts required in	the washing	3	4	6	5	4
3C	Justify the important standards needed in v	ce of IEC in			and IEC/ISO	2	4	6	5	4

MTE 2153 Page 3 of 7

4A	Implement the ARM assembly language program to compute the area of square, rectangle, and triangle. Write a function to find the area of the given shape.		2	1,2	1,2	3
4B	Implement the ARM assembly language program to count the number of words in the given sentence. (Hint: ASCII code of space is 0x20.)	4	2	1,2	1,2	3
4C	Choose an ARM assembly instruction example where the Q flag is set. Justify, the word used sticky flag used for saturation flag.	2	2	2	2	4
5A	Integrate the Embedded C code to establish UART communication between 2 MSP432 launchpads to generate different colors randomly (xR+yG+zB for x,y,z is either 0 or 1) for the RGB LED of the second microcontroller when a person enters the lift. Assume that the sensor provides a low signal on the P1.5 pin of the first microcontroller when a person enters the lift using the LDR hardware module. This information is transferred to second MC through P1.3 pin. The following parameters are selected for UART configuration: Parity disabled, LSB-first, 8-bit data length, One stop bit, Select the Baud rate of 115200 from 6 MHz SMCLK clock signal, Use UART module for the operation in both MCs. Develop the transmitter code to send the signal to the receiver when a person enters the lift.		3	1,3	1,2,5	6
5B	For the application mentioned in Q. 5A, implement the receiver code to glow LED with different colors when the indication of a person entry is detected in pin P1.5.		3	1,3	1,2,5	6
5C	Generate the Baudrate of 115200 for the transmitter and receiver using the SMCLK with 6 MHz clock settings. Compute the values to be loaded into the registers BRW, BRS, and BRF for UART communication.		3	1,3	1,2,5	3

MTE 2153 Page 4 of 7

Bits	15	14		13	12	11	
EUSCI_Ax->CTLW0	UC PEN	UC PAR		UC MSB	UC7BIT (UC SEVENBIT)	UCSPB	
EUSCI_A_CTLWO_ XX _x	1- enable parity	0-odd parity				1- 7 bits, 0- 8 bits	1- 2 stop bits, 0- 1 stop bit
Bits	10-9	8		7-6	0		
Bits	UC MODE X	UCSYNC		UC SSEL X	UC SWRST		
	00-UART, 01-idle, 10-address, 11- automatic baud rate			0-UCLK, 1-ACLK, 2-SMCLK	1- reset the module		
	45.0						
Bits	15-8		7-4		0 UC OS16		
EUSCI_Ax->MCTLW EUSCI_A_MCTLW_XX	Modulation property for BITCLK		UCBRFx Modulation property for BITCLK16 XX-BRF_OFS		1 1 1 1 1 1		

MTE 2153 Page 5 of 7

16	EUSCI_A0	EUSCIA0_IRQn	EUSCIA0_IRQHandler
17	EUSCI_A1	EUSCIA1_IRQn	EUSCIA1_IRQHandler
18	EUSCI_A2	EUSCIA2_IRQn	EUSCIA2_IRQHandler
19	EUSCI A3	EUSCIA3 IRQn	EUSCIA3 IRQHandler

Fractional	UCBRSx	Fractional	UCBRSx
Portion of N		Portion of N	
0	0x00	0.500	0xAA
0	0x01	0.571	0x6B
0	0x02	0.600	0xAD
0	0x04	0.625	0xB5
0	0x08	0.643	0xB6
0	0 x 10	0.666	0xD6
0	0 x 20	0.700	0xB7
0	0 x 11	0.714	0xBB
0	0x21	0.750	0xDD
0	0 x 22	0.786	0xED
0	0x44	0.800	0xEE
0	0 x 25	0.833	0xBF
0	0 x 49	0.846	0xDF
0	0x4A	0.857	0xEF
0	0 x 52	0.875	0xF7
0	0x92	0.900	0xFB
0	0x53	0.917	0xFD
0	0 x 55	0.928	0xFE

PIN	PxSEL1=0, PxSEL0=1
P1.2	UCA0RXD
P1.3	UCA0TXD

Bits	23	22	18-16	9-0
CS->CTL0	DCOEN	DCORES	DCORSEL	DCOTUNE
CS_CTL0_ XX _x	1-enable DCO clock source		0-1.5MHz,1-3MHz, 2-6MHz, 3-12MHz, 4-24MHz, 5- 48MHz	

Bits	30-28	26-24	22-20	18-16	12	10-8	6-4	2-0
CS->CTL1	DIVS	DIVA	DIVHS	DIVM	SELB	SELA	SELS	SELM
CS_CTL1_XX_	$\mathbf{x} = /2^x$	$\mathbf{x} = /2^x$	$\mathbf{x} = /2^x$	$\mathbf{x} = /2^x$	BCLK	ACLK	SMCLK, HSMCLK	MCLK
x	for	for	for	for MCLK	1-	000-	000-	000- LFXT/REFO
	SMCLK	ACLK	HSMCLK	TOT MCLIK	REFO	LFXT/REFO	LFXT/REFO,	001- VLO,
		АСШК	помени		0-	001- VLO	001- VLO,	010- REFO
					LFXT	010- REFO	010- REFO,	011- DCO,

MTE 2153 Page 6 of 7

MTE 2153 Page 7 of 7