

												Marks	CO]
4	Calcula	te the	coeffic	cient o	of kurt	osis γ	₂ for t	he foll	lowing	g data		3	2	
	x	0	1	2	3	4	5	6	7	8				
	f	1	8	28	56	70	56	28	8	1				

1B	Compute first harmonics of the Fourier series of $y = f(x)$ given by the following table									3	1	3
	x	0°	60°	120 [°]	180 [°]	240 [°]	300°					
	У	9	18	24	28	26	20					
1C	Obtain the Fourier series for $f(x) = \begin{cases} -\pi & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}$.							4	1	3		

Time: 3 Hours

(i) Answer ALL questions Note

2

2B

2C

interval

Frequency

using data

Р

12

12

16

DEPARTMENT OF SCIENCES, III SEMESTER B.Tech. (Printing & Media)

END SEMESTER EXAMINATIONS, January 2023

ENGINEERING MATHEMATICS III [MAT 2156]

	W(in Kg)	50	70	100	120				
	Compute P, w	when $W = 150$	0 Kg.			-			
							Montro	CO	Т
	T 1'	·			0			$\frac{co}{2}$	—
A	Two lines of regression of x and y are $3x + y - 12 = 0$ and							2	
	x + 2y - 14 = 0. Find the mean of x, mean of y and regression								
	coefficient b	etween <i>x</i> and	у.						

		Marks	СО	BI
3A	Two lines of regression of x and y are $3x + y - 12 = 0$ and	3	2	3
	x + 2y - 14 = 0. Find the mean of x, mean of y and regression			
	coefficient between x and y.			
3B	Find a unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at	3	3	2

	x + 2y - 14 = 0. Find the mean of x, mean of y and regression			
	coefficient between x and y.			
3B	Find a unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at	3	3	2
	the point $(1,2,-1)$.			
3C	Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\hat{\imath} - 2xy\hat{\jmath}$ taken around	4	4	3

Calculate mean median and mode for the following data:										
Calculate	Calculate mean, median and mode for the following data:									
							1			
Class		0_10	$10_{-}20$	20-30	30-40	40-50				
Class		0-10	10-20	20-30	JU- T U	-				

6

If *P* is the pull required to lift a load *W* by the means of a pulley block,

then find a linear law of the form P = mW + c, connecting P and W

15

the rectangle bounded by the lines $x = \pm a$, y = 0 and y = b.

7

21

9

25

where 0 < x < 3.

Find the half range sine series expansion of function $f(x) = x^2$, 1A

MAX. MARKS: 50

Marks

3

CO

1

3

4

2

3

3

4

BL

3

		Marks	CO	BL
4A	Find the work done in moving a particle in the force field	3	3	3
	$\vec{F} = 3x^2\hat{\imath} + (2xz - y)\hat{\jmath} + z\hat{k}$ along the curve C defined by			
	$x^2 = 4y, 3x^3 = 8z$ from $x = 0$ to $x = 2$.			
4B	Solve the partial differential equation	3	5	2
	$\partial^2 z$			
	$\frac{\partial x \partial y}{\partial x \partial y} = \sin x \sin y,$			
	where $z = 0$ when $y = \frac{\pi}{2}$ and $\frac{\partial z}{\partial y} = -2 \sin y$ when $x = 0$.			
4C	Verify the Green's theorem for	4	4	4
	$\int_{C} (xy^{2} + x^{2})dx + (4x - 1)dy$			
	where the curve C enclose the region bounded by x-axis, y-axis			
	and the straight line $y - x = 3$.			

	•••••••••••••••••••••••••••••••••••••••			
		Marks	CO	BL
5A	Solve the partial differential equation	3	5	3
	$\partial u \partial u \partial u$			
	$x \frac{\partial x}{\partial x} - y \frac{\partial y}{\partial y} = 2x^2$			
	using indicated transformations $s = xy$ and $t = x/y$.			
5B	Find d'Alembert's solution of one-dimensional wave equation	3	5	3
	$\partial^2 u = \partial^2 u$			
	$\frac{1}{\partial t^2} = c^2 \frac{1}{\partial x^2}.$			
5C	Solve following one-dimensional heat equation using separation	4	5	4
	of variables-			
	$\partial u \partial^2 u$			
	$\frac{\partial t}{\partial t} = \frac{\partial x^2}{\partial x^2}$			
	where $u(0,t) = u(1,t) = 0$ and $u(x,0) = f(x)$.			