Exam Date & Time: 22-Dec-2022 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

BTech III Semester-End Semester Examination-December 2022

ENGINEERING MATHEMATICS III [MAT 2156]

Marks: 50 Duration: 180 mins.

A

Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

- Find the Fourier series expansion of function $f(x) = 3x^2$, where $-\pi < x < \pi$.

 Hence deduce that $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$.
 - Compute up to second harmonics of the Fourier series of y = f(x) given by the following table

x	0°	60°	120°	180°	240°	300°
У	0.8	0.6	0.4	0.7	0.9	1.1

Obtain the Fourier series for
$$f(x) = \begin{cases} l - x & 0 < x \le l \\ 0 & l \le x < 2l \end{cases}$$
.

2) (3)

A)

(3)

Calculate the quartiles and quartile coefficient of skewness for the following data

	1		1			2	V	
Weight	70-80	80-90	90-	100-	110-	120-	130-	140-
			100	110	120	130	140	150
No. of persons	12	18	35	42	50	45	20	8

B) Calculate mean, median and mode for the following data:

Weight	0-10	10-20	20-30	30-40	40-50	50-60	
Number of articles	14	17	22	26	23	18	(3)

C) Fit a second-degree parabola to the following data

X	1	2	3	4	5	6	7	
ν	-5	-2	5	16	31	50	73	59

Two lines of regression of x and y are $x = \frac{107}{20} + \frac{9}{20}y$ and $y = \frac{33}{5} + \frac{4}{5}x$.

- A) Find the mean of x, mean of y and regression coefficient between x and y.
- Prove that the div $(r^n\vec{r}) = (n+3)r^n$ where $\vec{r} = x \hat{\imath} + y \hat{\jmath} + z \hat{k}$ and r denotes the magnitude of \vec{r} .
- C) (4)

Find div (\vec{F}) and curl (\vec{F}) , where $\vec{F} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$. Check whether \vec{F} is solenoidal or not.

- 4) Verify Divergence theorem for $\vec{F} = (x^2 - yz)\hat{\imath} + (y^2 - zx)\hat{\jmath} + (z^2 - xy)\hat{k}$ taken over the rectangular parallelopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.
 - B) Using Green's theorem, evaluate

$$\int_{C} -yx^2 dx + xy^2 dy$$

where the curve C encloses the region bounded by x –axis and the circle (2) $x^2 + y^2 = 25$ in the upper half plane.

C) Solve the partial differential equation

$$x\frac{\partial u}{\partial x} - y\frac{\partial u}{\partial y} + u = 2 \tag{3}$$

using indicated transformations z = xy and v = x.

5) Solve the partial differential equation

A)
$$\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y,$$
where $z = 0$ when $y = \pi/2$ and $\frac{\partial z}{\partial z} = -2 \sin y$ when $x = 0$

where z = 0 when $y = \pi/2$ and $\frac{\partial z}{\partial y} = -2 \sin y$ when x = 0.

B) (5) 12/19/22, 9:09 AM MAT 2156

Find d'Alembert's solution of the wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

where u(x, 0) = f(x) and $\frac{\partial u}{\partial t}(x, 0) = 0$.

Find the partial differential equation by eliminating arbitrary function from $z = (x + y)\phi(x^2 - y^2)$.

----End-----