Question Paper

Exam Date & Time: 26-Nov-2022 (02:00 PM - 05:00 PM)

Vth SEMESTER B.TECH END SEMESTER EXAMINATIONS, NOV 2022, MANIPAL INSTITUTE OF TECHNOLOGY

DIGITAL SIGNAL PROCESSING [BME 3153]

Α

Marks: 50

Duration: 180 mins.

(3)

(4)

Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

Determine which of the following linear systems is time invariant.

1)

A)

y(n) = -5x(n-10) $y(n) = 4x(n^2)$

$$y(n) = 2x(3n)$$

B) Sketch and express the sequence $x(n) = \begin{cases} (-1)^n; & -2 \le n \le 2 \text{ as a sum of scaled and shifted unit steps} \\ 0; & else \end{cases}$ (3)

C) The first nonzero value of a finite-length sequence x(n) occurs at index n = -6 and has a value x(-6) = 3, and the last (4) nonzero value occurs at index n = 24 and has a value x(24) = -4. What is the index of the first nonzero value in the convolution

$$y(n) = x(n) * x(n)$$

and what is its value? Also determine the last nonzero value

Consider the sequence $x(n) = \delta(n) + 2\delta(n-5)$

2)

A)

- i. Find the 10-point Discrete Fourier Transform of x(n) using properties
 - ii. Find the sequence that has a DFTY(k) = $e^{j2k\frac{2\pi}{20}}X(k)$ where X(k) is the 10-point DFT of x(n).
- B) A system has an impulse response $h(n) = \{1,2,3\}$ and output response $y(n) = \{1,1,2,-1,3\}$. Determine the (3) input sequence x(n) using Z-transform
- C) Form an expression for the signal given and calculate the Z-transform using properties

(3)

		-5 5	n
3)	•	Consider the length-6 sequence defined for $0 \le n < 6 \cdot x(n) = \{1, -2, 3, 0, -1, 1\}$ with an 8-point DFT $X(k)$. Evaluate the following functions of $X(k)$ without computing DFT:	(4)
	A)	i. X(0)	
		i. X(3)	
		ii. $\sum_{k=0}^{5} X(k)$	
		iii. $\sum_{k=0}^{5} X(k) ^2$	
	B)	Compute and sketch the magnitude and angle of the DFT of the length-3 signal $x[n] = 3\delta[n] + 2\delta[n-1] + 3\delta[n-2]$	(4)
	C)	Determine the z-transform of the following sequence: $y(n) = 0.5^{n-5} \cdot u(n-5)$	(2)
4)		The FIR systems are given by	(4)
	A)	a. $H(z) = 1 + 1.61z^{-1} + 1.74z^{-2} + 1.61z^{-3} + z^{-4}$. Determine and draw the transposed of Direct form II structure	
		b. $H(z) = (1 - 3z^{-1} + z^{-2})^5$ Determine and draw the Cascade form structure.	
	B)	An LTI system is described by the difference equation $y[n] = bx[n] - 0.81y[n - 2]$.	(3)
		i. Determine the frequency response of the system in terms of $m b$.	
		ii. Determine b so that $ H(e^{j\omega}) _{max} = 1$. Roughly plot the resulting magnitude response.	
	C)	Determine the inverse Z-transform of	(3)
		a. $X(z) = z^2(1 - 13z^{-1})(1 - z^{-1})(1 + 2z^{-2})$	
		$X(z) = \frac{1 - z^{-1}}{1 - \frac{1}{4}z^{-1}}$	
5)		A digital low-pass filter is required to meet the following specifications.	(3)
	A)	Passband attenuation \leq 1 dB	
		Passband edge = 4 kHz	
		Stopband attenuation \ge 40 dB	
		Stopband edge = 8 kHz	
	B)	Sampling rate = 24 kHz. Design the poles and cut-off frequency of Butterworth filter. A Prototype low-pass filter has the system function $H_p(s) = \frac{1}{s^n + 3s + 2}$. Obtain a band pass filter with	(2)
		$\Omega_0 = 3 rad/s$ and $Q = 12$	
	C)	A researcher uses a combination of the following 2 digital filters in cascade (series):	(5)
		Filter 1: The output is the first derivative or difference of the input.	
		Filter 2: The output is the average of the current input sample and the preceding	

Page 2 of 3

- i.
- a. Give the input-output relationship in the time domain (difference equation) for each filter.
- b. Derive the transfer function H(z) for each filter.
- c. Derive the impulse response of the complete system.
- d. Derive the transfer function H(z) of the complete system.
- e. Does it matter which filter is placed first? Explain.

-----End-----