

Vth SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS November-2022 SUBJECT: CHEMICAL REACTION ENGINEERING [CHE 3151]

Time: 180 Min

Date: 26-11-2022

Marks: 50 Marks

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitable assumed.
- Use graphs wherever relevant.

1A)	Consider the reaction A-> R with $-r_A = k_1C_A/(1+k_2C_A)$. How do you test this rate for a given experimental data set of concentration vs time?	4M
1B)	For the data in question 1, find size of A CSTR required for a conversion of 96% when volumetric flow rate is 20 l/hr. Given k_1 = $10s^{-1}$, k_2 = 1 (mol/l) ⁻¹ , C_{A0} = 1 mol/l.	3M
1C)	Using separate feeds of A and B sketch the contacting pattern and reactor conditions which would best promote the formation of product R for the below elementary reactions in a flow system. $A+B\to R$ $2A\to S$	3M
2A)	Modify the two-parameter model for a first order reaction carried out in a tank reactor with (ONLY) bypassing. Derive an expression for conversion of reactant in terms of adjustable parameter/s and known parameters.	4M
2B)	Prove that recycle reactor is better than a CSTR or PFR to perform an autocatalytic reaction for high conversion.	ЗМ
2C)	List the assumptions made in an ideal batch, plug flow and mixed flow reactor.	ЗМ

A gaseous feed of pure A (2 mol/l, 100 mol/min) decovariety of products in a plug flow reactor. The kinetics is represented by $A \rightarrow 2.5 P$																	
	$-r_A = 10 \text{ min}^{-1} \text{ CA}$. Find the expected conversion in a 22-litre reactor.																
3B)	Define i) selectivity ii) yield iii) conversion iv) ϵ .													2M			
3C)	Tracer was injected as a pulse to the reactor of flow rate 10 dm ³ /min and following concentration is measured at the outlet.												5M				
	t (min) C(t) X 10 ^s	0	1 622	812	3	785	5	6 650	8 523	10	15 238	20	25 77	30	35 25	40	
	(a) Calculate the mean residence time and variance.(b) Fraction of material spends time between 2 and 4 min in the reactor.(c) Fraction of material spends time longer than 6 min in the reactor.																
4A)	A gas-phase decomposition reaction takes place in a batch reactor at 200 °C. A → B + C												3M				
	Time (min)S				0		6	12		18	2	4	30)	36	,	
	C_{Br_2} (g mol/L)				5.70	C	4.00	2.7	0	1.80	1	.25	0.	85	0.	60	
1 B)	Determine the reaction order for from the given data using the integral method and calculate the reaction-rate constant. From a gas-phase oxidation reaction of ammonia, nitric oxide is prepared and used to produce nitric acid. 4 NH3+502 -> 4 NO + 6H2O Air with 15% NH3 is sent as feed at 8.2 atm and 227 °C. Calculate the Concentration of ammonia in the feed and prepare the stoichiometric table for constant volume reactor with ammonia as basis of calculation.											e is	3M				
4C)	Define (i) order of the reaction (ii) molecularity. Deduce the rate laws for following elementary reactions: (a) $CH_3COOC_2H_5 + C_4H_9OH \leftrightarrow CH_3COOC_4H_9 + C_2H_5OH$ (b) $2CH_3NH_2 \leftrightarrow (CH_3)_2NH + NH_3$ (c) $(CH_3CO)_2O + H_2O \leftrightarrow 2CH_3COOH$												4M				
	(d) $C_2H_6 \to C_2H_4 + H_2$																

5A)	For the follow Substrate-Corproduct (r_p) substrate (C_S)	exp	$x-1$ (r_t) ressected oduct s	E.S), I l onl specie	Enzyr y in	ne-Sul conce	ostrat	e-Co	mple	$x-2 (r_E)$	(o) and	
	$Enzyme + Substrate 1 \leftrightarrow Enzyme-Substrate-Complex 1$											
	2. E.S	\rightarrow	Q			-3	U DIAL	our ac	001	ripiex.		
	Enzyme-Substrate-Complex 1 → Product Species Q											
	$3. E + Q \leftrightarrow E. Q$											
	Enzyme + Product Species Q ↔ Enzyme-Substrate-Complex											
	$4. E. Q \rightarrow P + E$											
	Enzyme	e-Sui	bstrate	-Com	plex.	$2 \rightarrow 1$	Produ	ct P +	Enz	уте		
(B)												
,,,	Define with mathematical expression the moments of residence time distribution.											2M
C)	Compute the following from the following reaction data:											4M
	X	0	0.1		0.3		0.5	_		0.8	0.9	
	-r _A (mol/dm ³ ·min)	2	2.9	5	5	3	2	5	5	2.2	1.38	
	F _{A0} /-r _A (dm ³)	50	34.5	20	20	33.3	50	20	20	45.5	72.5	
		the	rolines			0						
	 a) Compare the volume of mixed flow reactor required for 50% and 70% conversion. 											
	 b) Compare the volume of mixed flow reactor and plug flow reactor required for 90% conversion. 											
	Recommend a series of reactors for with optimal total volume to attain											
	c) 50% conversion											
	d) 90% conversion											
	W SUIT											
