Exam Date & Time: 30-Dec-2022 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

V Semester Make Up Examination MASS TRANSFER II (CHE 3152)

MASS TRANSFER- II [CHE 3152]

Marks: 50

Duration: 180 mins.

Descriptive Questions

Answer all the questions.

Section Duration: 180 mins

1) Derive an expression to theoretically calculate the minimum number of travs if the relative volatility remains reasonably constant throughout the column (provided xD, xW (3) and α are known).

A)

- A binary mixture (A and B) are fractionated using a fractionator which has 3 ideal B) plates. The feed enters between 2nd and the 3rd trays. The feed is a saturated vapor with mole fraction 0.005. The condenser used is a total condenser and the reflux is at its bubble point. The molar rate of reflux is 1.3 moles/mole of feed and rate of vaporization (5) in reboiler is 0.6 moles/mole of feed. The equation for equilibrium line is given as y = 12.6 x. Calculate the volume and concentration of distillate and the residue.
- Compare and contrast Azeotropic and Extractive distillation.

(2)

2) 100 moles of benzene and toluene containing 50 mole% benzene is subjected to a differential distillation at atmospheric pressure till the composition of the benzene in the residue is 33% by mole. Calculate the total moles of the mixture distilled. Assume α = (3) A)

2.4

B) 1000 kg of crushed oil seeds (19.5% oil, 80.5% meal) is extracted in a three-stage crosscurrent unit using 500 kg of pure hexane in each stage. The equilibrium data are as follows:

(5)

Overflow (100 kg) solution			Underflow (100 kg) slurry			
W _A (kg)	W _B (kg)	W _C (kg)	W' _A (kg)	W' _B (kg)	W' _C (kg)	
0.3	99.7	0	67.2	32.8	0	
0.45	90.6	8.95	67.1	29.94	2.96	
0.54	84.54	14.92	66.93	28.11	4.96	
0.70	74.47	24.83	66.58	25.06	8.36	
0.77	69.46	29.77	66.26	23.62	10.12	
0.91	60.44	38.65	65.75	20.9	13.35	
0.99	54.45	44.56	65.33	19.07	15.6	
1.19	44.46	54.35	64.39	16.02	19.59	
1.28	38.50	60.22	63.77	14.13	22.10	
1.28	34.55	64.17	63.23	12.87	23.90	
1.48	24.63	73.89	61.54	9.61	28.85	

Calculate the fraction of oil extracted using PS method.

- C) Consider two binary mixtures of C and D with concentration 0.6 and 0.8 and enthalpies 500 kcal/mole and 10,000 kcal/mole respectively. When the two mixtures are mixed together. The resulting solution has a concentration of 0.68. Compute the enthalpy of the mixture.
- A mixture of 35 mole % A and 65 mole % B is to be separated in a distillation column.

 96% of the component A from the feed is in the distillate. The concentration of A in the distillate is 93 mole %. The feed is half vapor and reflux ratio is 4. The relative volatility (5) is 2.5. How many equilibrium stages are required in each section of the column?
 - B) Determine the minimum reflux ratio for the conditions given in question 3A. (2)
 - C) Nicotine in a water solution containing 1% nicotine is to be extracted with kerosene at 20°C. Water and kerosene are essentially insoluble. Determine the % extraction of nicotine if 100 kg of feed solution is extracted once with 150 kg solvent.

X' (kg nicotine/kg water)	0	0.001011	0.00246	0.00502	0.00751	0.00998	0.0204	(3
y*' (kg nicotine/kg kerosene)	0	0.000807	0.001961	0.00456	0.00686	0.00913	0.01870	

A feed of 1000 kg aqueous solution of pyridine per hour (50% by mass) is to be extracted with pure benzene to reduce the solute content in the raffinate to 2%. Determine the minimum solvent rate. (Use rectangular coordinate system)

(5)

	layer	Benzene layer			
Pyridine (mass %)	Benzene (mass %)	Pyridine (mass %)	Benzene (mass		
1.17	0	3.28	94.54		
3.55	0	9.75	87.46		
7.39	0	18.35	79.49		
13.46	0.15	26.99	71.31		
22.78	0.25	31.42	66.46		
32.15	0.44	34.32	64.48		
42.47	2.38	36.85	59.35		
48.87	3.99	39.45	56.43		
49.82	4.28	39.27	55.72		
56.05	19.56	48.39	40.05		

- B) Consider Ponchon-Savarit method. Derive the theoretical expressions to determine heat load on condenser, reboiler and the hypothetic stream with a neat schematic diagram (marking all the streams). Also discuss about the significance of the hypothetic stream. (3)
- C) Write a short note on Type 1 and Type 2 systems of three liquids for extraction process with a sample representation of triangular coordinates. (2)
- Discuss about spiral wound membranes and bundle of hollow fibers with schematic representation. Which among these is generally used in RO systems?

 (4)
 - B) Write a short note on any two pressure driven membrane types with their applications. (2)
 - C) Write a short note on any two solid-liquid contacting equipment which operates in counter-current mixing with a neat schematic diagram. (4)

----End-----