## DEPARTMENT OF CHEMICAL ENGINEERING V SEMESTER B.TECH. CHEMICAL ENGINEERING END SEMESTER EXAMINATION SUBJECT: MASS TRANSFER II (CHE 3152) Exam Date & Time: 22-Nov-2022 (02:00 PM - 05:00 PM) Time: 3 Hours MAX. MARKS: 50 | Q.<br>No | D. | | | | | | Que | stion | | | 12111 | | | Les ye | M | CO | BL | |----------|------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|-------------------------------------------|---------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------|-------------------------------------|-------------------------------------------|------------------------------------------|---------------------|----------------------|---|----|----| | 1A. | percen<br>percen<br>a total<br>concer<br>follow | t ethy<br>t hep<br>cond<br>tratic<br>s: | /l ber<br>tane<br>ense<br>on da | nzene<br>and a<br>er and<br>ata for | is to<br>resideed<br>the | be f<br>due c<br>at its<br>hepta | ractiona<br>containing<br>s saturate<br>nne-ethy | nole per<br>ated to a<br>ng 99 m<br>ted liquity<br>l benze | a dis<br>nole<br>id co<br>ene | perce<br>onditi<br>at 1 at | e conta<br>ent ethy<br>ion. Th<br>tm pres | ining 9<br>yl benz<br>e entha<br>ssure a | 97 n<br>ene<br>alpy | nole<br>using | 5 | 2 | 3 | | | x | 0 | | 0.08 | 0. | 18 | 0.25 | 0.49 | 0. | 65 | 0.79 | 0.91 | T | | | | | | | у | 0 | | 0.28 | 3807 | .43 | 0.51 | 0.73 | 0788 | 2000 | 0.90 | 0.96 | | | | | | | | H <sub>L</sub><br>(kJ/ki<br>x 10 <sup>-3</sup> | | 24. | .3 2 | 4.1 | 23.2 | 2 22.8 | 3 22.0 | )5 | 21.75 | 5 21. | 7 21. | .6 | 21.4 | | | | | | H <sub>V</sub><br>(kJ/ki<br>x 10 <sup>-3</sup> | | 61. | .2 5 | 9.6 | 58.5 | 5 58.1 | 56.5 | | 55.2 | 54.4 | 4 53. | .8 | 53.3 | | | | | B. | Calcul | ate th | e mi | nimur | n nu | mber | of stag | ges for t | he c | lata g | iven in | Quest | ion | 1A. | 3 | 2 | 3 | | | is to be<br>residua<br>mole o | cont<br>d liqu<br>f feed<br>nole, | tinuo<br>tid p<br>d, the<br>calc | ously for<br>roducted<br>liqui-<br>ulated | lash<br>t con<br>d pro<br>the c | vapo<br>ntains<br>oduct<br>conce | 35 mo | each of vaporial e wapor of the | ze 6<br>nze<br>pro | 60 mo<br>ne. If<br>duct a | the enterespective | f the fe<br>thalpie<br>pective | eed.<br>s pe | The<br>er<br>2,5 and | 2 | 1 | 3 | | 2A. | A bina<br>below<br>Feed ra<br>Mole f<br>Mole f<br>Botton<br>Reflux<br>In the | ate = raction pro-<br>ration pro-<br>strippe con | 350<br>on o<br>on o<br>duct<br>o = 3<br>oing | kmol<br>f more<br>f botte<br>rate = | /h; (e vo om p = 20 on it n the | Overlatile<br>latile<br>orodu<br>0 km | head process composite to the | hat the | ate<br>n ov<br>mo | = 150<br>erhea<br>ole fra<br>is 0.3 | kmol<br>d prod<br>ection of | /h;<br>luct = | 0.9° | 7<br>re | 4 | 3 | 4 | ## MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal) | per ho | tinuous<br>our of a l | fractionati<br>iquid mixt | ng column<br>ure containi | is to be design | ned for separa<br>ercent methan | ting 10,000 k | g 4 | 3 | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---| | percer | nt water | into an ov | erhead proc | luct containin | g 97 mole pe | roont mathen | -1 | | | | and a l | bottom r | roduct has | vina 98 mol | e percent water | er. A mole ref | lus ratio of 2 | 71 | | | | used ( | Calculate | (i) moles | of overhead | percent wan | ined per hour a | and (ii) awarb | IS | | | | of ides | al nlates | and location | on of the fee | ed plate if the | feed is at its b | and (11) numbe | r | | | | X | 0.1 | 0.2 0 | .3 0.4 | | | | - | | | | V | 0.417 | | .669 0.72 | | | 0.8 0.9 | - | | | | YVIbat i | | | | | | 0.915 0.959 | - | | 1 | | thermo | s/are the<br>odynami | e assumption | on(s) of Mc | Cabe Thiele | method? Disc<br>apport these as | uss about the | 2 | 3 | | | . For ex | traction | of dioxane | from water | henzene ie u | ised as an extr | nation | 4 | 4 | + | | solven | t The ec | milibrium | distribution | of dioyana h | etween water | action | | 4 | | | ac aiva | en below | quinorium. | distribution | of dioxane of | etween water | and benzene i | S | | | | | | | 100 | | | | | | | | Weig | | 5.1 | 18.9 | 9 2 | 5.2 | | | | | | dioxa | | - | | | P | | | | | | water | | | | | | | | 9 | | | Weigh | | 5.2 | 22.: | 5 3: | 2 | | | | | | dioxa | | | | | | | | | | | benze | | | | | | | | | | | At the | se conce | ntrations, | water and b | enzene are ins | soluble, 1000 | kg of solution | | | | | contain | ing 25% | dioxane i | s to be extra | acted with ber | zene to remov | ve 95% of the | | | | | dioxan | e. The di | ioxane free | benzene is | used as the se | olvent. Calcul | ate the | | | | | | | | | ge operation. | | | | | | | Writes | short n | ote on an | two solid | liquid contac | ting equipme | ent sublab | 4 | 5 | | | does no | at recult | in the ale | gaing by E | -nquid contac | schematic di | ent which | 4 | 3 | | | does no | orresun | III the clo | gging by n | nes with neat | schematic di | agram | | | | | Part . | | | | | contentatio di | agrain. | - | | - | | Dilute | ethanol- | water solu | utions can b | e continuous | ly rectified to | give at best | 2 | 1 | 1 | | Dilute of | ctures co | ontaining l | utions can b<br>89.4 mole 9 | oe continuous<br>% ethanol at a | ly rectified to | give at best<br>ressure, | 2 | 1 | 2 | | Dilute of<br>the mix<br>since th | ctures co | ontaining to<br>composi | utions can b<br>89.4 mole %<br>tion of min | be continuous 6 ethanol at a imum boiling | ly rectified to<br>atmospheric p | give at best<br>ressure,<br>the binary | 2 | 1 | 1 | | Dilute of<br>the mix<br>since the<br>system. | ctures co<br>his is the<br>. Ethano | ontaining a<br>composi-<br>of can be f | utions can b<br>89.4 mole %<br>tion of min<br>urther purif | be continuous<br>6 ethanol at a<br>6 imum boiling<br>6 ither by | ly rectified to<br>atmospheric p<br>azeotrope in<br>using n-penta | give at best<br>ressure,<br>the binary<br>ane as | 2 | 1 | 1 | | Dilute of<br>the mix<br>since the<br>system. | ctures con<br>this is the<br>Ethano<br>er or eth | ontaining of<br>composi-<br>of can be fragilier<br>of can be fragilier | utions can b<br>89.4 mole %<br>tion of min<br>urther purif<br>col as solve | be continuous 6 ethanol at a imum boiling ied either by ent. Write sho | ly rectified to<br>atmospheric p<br>azeotrope in<br>using n-penta<br>ort notes on th | give at best<br>pressure,<br>the binary<br>ane as<br>the methods | 2 | 1 | | | Dilute of<br>the mix<br>since the<br>system. | ctures con<br>this is the<br>Ethano<br>er or eth | ontaining of<br>composi-<br>of can be fragilier<br>of can be fragilier | utions can b<br>89.4 mole %<br>tion of min<br>urther purif<br>col as solve | be continuous 6 ethanol at a imum boiling ied either by ent. Write sho | ly rectified to<br>atmospheric p<br>azeotrope in<br>using n-penta<br>ort notes on th | give at best<br>pressure,<br>the binary<br>ane as<br>the methods | 2 | 1 | | | Dilute of<br>the mix<br>since the<br>system<br>entrained<br>which to | ctures con<br>his is the<br>Ethano<br>er or eth<br>uses the | ontaining a<br>composi-<br>ol can be f<br>nylene glye<br>above-me | utions can be a self-<br>89.4 mole 9 tion of minurther purifical as solve and to the artifical as solve antioned control and as solve antioned control as solve and as solve and as solve | be continuous 6 ethanol at a imum boiling ied either by ent. Write sho mpounds in t | ly rectified to<br>atmospheric p<br>azeotrope in<br>using n-penta | give at best<br>pressure,<br>the binary<br>ane as<br>the methods | 2 | 1 | 1 | | Dilute of<br>the mix<br>since the<br>system<br>entrained<br>which used corrections | ctures con<br>his is the<br>Ethano<br>er or eth<br>uses the<br>mment con | ontaining to<br>e composi-<br>ol can be fraylene gly-<br>above-me<br>on the mos | utions can be a selected with the selected with the selected as solve and the selected with select | be continuous of ethanol at a simum boiling fied either by ent. Write show mpounds in the method. | ly rectified to<br>atmospheric p<br>azeotrope in<br>using n-penta<br>ort notes on the<br>he purification | p give at best<br>pressure,<br>the binary<br>ane as<br>the methods<br>of ethanol | | | | | Dilute the mix since the system entraine which u and corr | ctures con is is the continuous that is the continuous the continuous the continuous that is i | ontaining to<br>e composi-<br>ol can be fraylene gly-<br>above-me<br>on the mos-<br>eds conta | utions can be a self-self-self-self-self-self-self-self- | be continuous of ethanol at a simum boiling fied either by ent. Write show the mpounds in the method, ass % oil is the entire of | ly rectified to<br>atmospheric p<br>azeotrope in<br>using n-penta<br>ort notes on the<br>he purification | o give at best<br>pressure,<br>the binary<br>ane as<br>the methods<br>on of ethanol | 5 | 5 | | | Dilute of the mix since the system. entrained which used to the correction of co | tures con is is the control of c | ontaining to<br>e composite<br>of can be frequency<br>above-me<br>on the most<br>eds contained the oil | utions can be a selected as solve at desirable ining 28 m content to | be continuous of ethanol at a simum boiling fied either by ent. Write show the mpounds in the method, ass % oil is the old of the continuous continuo | ly rectified to<br>atmospheric p<br>azeotrope in<br>using n-penta<br>ort notes on the<br>he purification<br>to be extracted<br>underflow. 1 | o give at best<br>pressure,<br>the binary<br>ane as<br>the methods<br>of of ethanol | | | | | Dilute the mix since the system entrained which used to correct the th | tures con is is the . Ethano er or eth uses the mment or eth oil see to reduct is used | ontaining to composite composite can be for above-me on the most eds contained the oil of the contained the oil of the contained the oil of the contained composite contained the contained the contained the composite co | utions can be a selected as solve at desirable ining 28 m content to feed. Determine the selected as the selected as solve at the selected as solve at the selected as solve at the selected as solve as solve at the selected as solve so | be continuous of ethanol at a simum boiling fied either by ent. Write show the mpounds in the method, ass % oil is the old of the continuous continuo | ly rectified to<br>atmospheric p<br>azeotrope in<br>using n-penta<br>ort notes on the<br>he purification | o give at best<br>pressure,<br>the binary<br>ane as<br>the methods<br>of of ethanol | | | | | Dilute of the mix since the system. entrained which using contractions of the contraction | Ethano<br>Ethano<br>Ethano<br>er or eth<br>uses the<br>mment of<br>ed oil se<br>to redu<br>t is used | ontaining to composite com | utions can be a selected as solve to the selec | be continuous to ethanol at a simum boiling fied either by ent. Write shompounds in the method, ass % oil is to 0.8% in the ermine the new to the ermine the new to the ermine the method. | ly rectified to<br>atmospheric p<br>azeotrope in<br>using n-penta<br>ort notes on the<br>he purification<br>to be extracted<br>underflow. It<br>of stages re | o give at best<br>pressure,<br>the binary<br>ane as<br>the methods<br>on of ethanol<br>and with<br>the kg of<br>equired | | | | | Dilute the mix since the system entrained which using contractions of the contraction | tures con is is the Ethano er or eth uses the mment of ethanological er to reduct is used counter-overflow | ontaining to composite composite of can be for the most eds contained the th | utions can be a selected as solve contioned country to the content to feed. Determine colution | be continuous to ethanol at a simum boiling fied either by ent. Write show the mpounds in the method. ass % oil is the ermine the new termine the new termine the method. | ly rectified to<br>atmospheric p<br>g azeotrope in<br>using n-penta<br>ort notes on the<br>he purification<br>to be extracted<br>underflow. It<br>to of stages re- | give at best<br>pressure,<br>the binary<br>ane as<br>the methods<br>of ethanol<br>ed with<br>kg of<br>equired | | | | | Dilute of the mix since the system entrained which using contractions of the contraction | tures con is is the Ethano er or eth uses the mment of ethanological er to reduct is used counter-overflow | ontaining to composite com | utions can be 89.4 mole 9 tion of minurther purifical as solve entioned co at desirable ining 28 m content to feed. Determing. | be continuous to ethanol at a simum boiling fied either by ent. Write shompounds in the method, ass % oil is to 0.8% in the ermine the new to the ermine the new to the ermine the method. | ly rectified to<br>atmospheric p<br>azeotrope in<br>using n-penta<br>ort notes on the<br>he purification<br>to be extracted<br>underflow. It<br>of stages re | o give at best<br>pressure,<br>the binary<br>ane as<br>the methods<br>on of ethanol<br>and with<br>the kg of<br>equired | | | | | Dilute the mix since the system entrained which the and correspond to the corresponding th | Ethano<br>er or eth<br>uses the<br>mment of<br>ed oil se<br>to redu<br>t is used<br>counter-<br>verflow | ontaining to composite composite of can be for the most eds contained the th | utions can be a solved to the | be continuous to ethanol at a simum boiling fied either by ent. Write shown the method, ass % oil is to 0.8% in the ermine the new Ya (kg) | ly rectified to atmospheric programme programm | give at best pressure, the binary and as the methods of ethanol and with the kg of equired the slurry were considered to the constant of the kg of equired | | | | | Dilute of the mix since the system. entrained which used to control of the contro | Ethano Et | ontaining to composite composite composite of can be frequency above-me on the most eds contained the th | utions can be a serious can be a serious can be a solved as solved and a solved aching 28 m content to a feed. Determine the aching. Wc (kg) 0 | be continuous of ethanol at a simum boiling fied either by ent. Write show the mpounds in the method. ass % oil is the ermine the new Ya (kg) 67.2 | ly rectified to atmospheric programme grant azeotrope in using n-pentary notes on the purification to be extracted underflow. It is of stages reflow (100 kg) W'B (kg) 32.8 | give at best pressure, the binary and as the methods of ethanol ed with the kg of equired the solution of the kg of equired | | | | | Dilute the mix since the system entrained which using contract to the | tures comis is the Ethanological Ethanologic | ontaining to composite composite of can be for the most contained to the most contained to the | utions can be a selected as solve continued co | be continuous of ethanol at a simum boiling fied either by ent. Write show mpounds in the method, ass % oil is the ermine the new Ya (kg) 67.2 67.1 | ally rectified to atmospheric programme pentagent notes on the purification of the purification of stages record (100 kg) W'B (kg) 32.8 29.94 | give at best pressure, the binary and as the methods of ethanol ed with the kg of equired w | | | | | Dilute the mix since the system entrained which using contract to the | ctures comis is the learner or ethics the ment of the counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter-counter- | ontaining to composite composite composite can be frequence glycabove-me on the most eds contained the oil per kg of current lee (100 kg) s WB (kg) 99.7 90.6 84.54 | utions can be a selected as solve continued co | be continuous to ethanol at a simum boiling fied either by ent. Write show mpounds in the method. ass % oil is the ermine the new the method. Under W'A (kg) 67.2 67.1 66.93 | ly rectified to atmospheric programme programm | b give at best pressure, the binary and as the methods of ethanol ed with kg of equired Slurry W'c (kg) 0 2.96 4.96 | | | | | Dilute the mix since the system entrained which the and correspond to the corresponding th | Ethano Et | ontaining to composite com | utions can be a solve tion of minurther purifical as solve entioned coast desirable ining 28 m content to a feed. Detaching. Oution Wc (kg) 0 8.95 14.92 24.83 | be continuous to ethanol at a simum boiling fied either by ent. Write shown the method, ass % oil is to 0.8% in the ermine the new Ya (kg) 67.2 67.1 66.93 66.58 | ally rectified to atmospheric programme programme programme pentage and the purification of the purification of stages record (100 kg) W'B (kg) 32.8 29.94 28.11 25.06 | give at best pressure, the binary and as the methods of ethanol and with the desired t | | | | | Dilute the mix since the system entrained which the and corresponding to the solvent using control of t | ctures comis is the Ethano er or ethans the Ethano er or education under everflow (kg) 3 3 5 4 7 7 | ontaining to composite com | utions can be a serious can be a serious can be a solved as solved and a solved aching 28 m content to a feed. Determine the aching. Oution Wc (kg) O 8.95 14.92 24.83 29.77 | be continuous of ethanol at a simum boiling fied either by ent. Write show mpounds in the method. ass % oil is the ermine the new M'A (kg) 67.2 67.1 66.93 66.58 66.26 | ly rectified to atmospheric programme per transfer to the purification of the purification of the purification of stages reflow (100 kg) W'B (kg) 32.8 29.94 28.11 25.06 23.62 | give at best pressure, the binary and as the methods of ethanol and with the kg of equired | | | | | Dilute the mix since the system entrained which using contract to the | ctures comis is the Ethanological Ethanologi | ontaining to composite composite composite of can be fixed above-me on the most eds contained the co | utions can be a serious can be a serious can be a solved as solved and a solved aching 28 m content to a serious contains and a serious content to a serious content to a serious content to a serious content | be continuous of ethanol at a simum boiling fied either by ent. Write show mpounds in the method, ass % oil is the ermine the new way (kg) 67.2 67.1 66.93 66.58 66.26 65.75 | ly rectified to atmospheric programme programm | give at best pressure, the binary and as the methods of ethanol ed with the kg of equired w | | | | | Dilute the mix since the system entrained which using contract the solvent using contract to the solvent using contract to the solvent | ctures comis is the Ethanological Ethanologi | ontaining to composite com | utions can be a series of the | be continuous to ethanol at a simum boiling fied either by ent. Write show mpounds in the method. ass % oil is the ermine the new the method. Under W'A (kg) 67.2 67.1 66.93 66.58 66.26 65.75 65.33 | ly rectified to atmospheric programme programm | give at best pressure, the binary and as the methods of ethanol and with the kg of equired | | | | | Dilute the mix since the system entrained which the and corresponding to the system of | ctures comis is the Ethanocer or ethan cer education is used counter-overflow (kg) 3 3 5 4 0 7 1 9 9 | ontaining to composite com | utions can be a solve tion of minurther purifical as solve entioned coast desirable ining 28 m content to feed. Determine where the feed c | be continuous of ethanol at a simum boiling fied either by ent. Write show the mpounds in the method, ass % oil is to 0.8% in the ermine the new W'A (kg) 67.2 67.1 66.93 66.58 66.26 65.75 65.33 64.39 | ly rectified to atmospheric programme programm | give at best pressure, the binary and as the methods of ethanol ed with the kg of equired w | | | 3 | | Dilute the mix since the system entraine which the and correction of the | ctures comis is the Ethano er or ethans ethan | ontaining to composite com | utions can be a series of the | be continuous to ethanol at a simum boiling fied either by ent. Write show mpounds in the method. ass % oil is the ermine the new the method. Under W'A (kg) 67.2 67.1 66.93 66.58 66.26 65.75 65.33 | ly rectified to atmospheric programme programm | b give at best pressure, the binary and as the methods of ethanol ed with kg of equired Slurry W'c (kg) 0 2.96 4.96 8.36 10.12 13.35 15.6 | | | | | Dilute the mix since the system entrained which the and corresponding to the system of | ctures comis is the Ethano er or ethans ethan | ontaining to composite com | utions can be a solve tion of minurther purifical as solve entioned coast desirable ining 28 m content to feed. Determine where the feed c | be continuous of ethanol at a simum boiling fied either by ent. Write show the mpounds in the method, ass % oil is to 0.8% in the ermine the new W'A (kg) 67.2 67.1 66.93 66.58 66.26 65.75 65.33 64.39 | ly rectified to atmospheric programme programm | give at best pressure, the binary and as the methods of ethanol and with the kg of equired | | | | ## MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal) | 4B | What is the signification column? Also desperating line. | 2 | 2 | 2 | | | | |----|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------|---|---| | 4C | Derive an express<br>trays if the relative<br>the column (provi | 3 | 1 | 2 | | | | | 5A | Write a shot note of a neat block diagra | 2 | 4 | 1 | | | | | 5B | Discuss any two ty<br>exact application.<br>in food industries. | Also comment on t | | stries with their<br>or such membranes | 4 | 5 | 2 | | 5C | A feed of 1200 kg | 4 | 4 | 4 | | | | | | be extracted with p<br>3%. Determine the | ure benzene to redu<br>minimum solvent ra | ce the solute conten | t in the raffinate to | 7 | 7 | | | | be extracted with p<br>3%. Determine the<br>Water | ure benzene to redu<br>minimum solvent ra<br>r layer | ce the solute content<br>ate Benzer | t in the raffinate to | 4 | 7 | | | | be extracted with p<br>3%. Determine the | ure benzene to redu<br>minimum solvent ra | ce the solute conten | t in the raffinate to | 7 | 7 | 7 | | | be extracted with p 3%. Determine the Water Pyridine (mass | minimum solvent ra r layer Benzene (mass | Benzer Pyridine (mass | t in the raffinate to ne layer Benzene (mass | 67 <b>1</b> 5 | 7 | | | | be extracted with p 3%. Determine the Water Pyridine (mass %) | ure benzene to redu<br>minimum solvent ra<br>r layer<br>Benzene (mass<br>%) | Benzer Pyridine (mass %) | t in the raffinate to ne layer Benzene (mass %) | 7 | 7 | | | | be extracted with p 3%. Determine the Water Pyridine (mass %) 1.17 | ure benzene to redu<br>minimum solvent ra<br>r layer<br>Benzene (mass<br>%) | Benzer Pyridine (mass %) 3.28 | t in the raffinate to ne layer Benzene (mass %) 94.54 | 4 | 7 | | | | be extracted with p 3%. Determine the Water Pyridine (mass %) 1.17 3.55 | minimum solvent rar layer Benzene (mass %) 0 | Benzer Pyridine (mass %) 3.28 9.75 | t in the raffinate to le layer Benzene (mass %) 94.54 87.46 | 4 | 7 | | | | be extracted with p 3%. Determine the Water Pyridine (mass %) 1.17 3.55 7.39 | r layer Benzene (mass %) 0 0 | Benzer Pyridine (mass %) 3.28 9.75 18.35 | Benzene (mass %) 94.54 87.46 79.49 | 4 | 7 | | | | be extracted with p 3%. Determine the Water Pyridine (mass %) 1.17 3.55 7.39 13.46 | ure benzene to redu<br>minimum solvent ra<br>r layer<br>Benzene (mass<br>%)<br>0<br>0 | Benzer Pyridine (mass %) 3.28 9.75 18.35 26.99 | t in the raffinate to ne layer Benzene (mass %) 94.54 87.46 79.49 71.31 | 4 | 7 | | | | be extracted with p 3%. Determine the Water Pyridine (mass %) 1.17 3.55 7.39 13.46 22.78 | ure benzene to redu<br>minimum solvent ra<br>r layer Benzene (mass %) 0 0 0 0.15 0.25 | Benzer Pyridine (mass %) 3.28 9.75 18.35 26.99 31.42 | t in the raffinate to ne layer Benzene (mass %) 94.54 87.46 79.49 71.31 66.46 | 4 | 7 | | | | be extracted with p 3%. Determine the Water Pyridine (mass %) 1.17 3.55 7.39 13.46 22.78 32.15 | Benzene (mass %) 0 0 0 0.15 0.25 0.44 | Benzer Pyridine (mass %) 3.28 9.75 18.35 26.99 31.42 34.32 | t in the raffinate to le layer Benzene (mass %) 94.54 87.46 79.49 71.31 66.46 64.48 | 4 | 7 | | | | be extracted with p 3%. Determine the Water Pyridine (mass %) 1.17 3.55 7.39 13.46 22.78 32.15 42.47 | ure benzene to redu<br>minimum solvent ra<br>r layer Benzene (mass %) 0 0 0.15 0.25 0.44 2.38 | Benzer Pyridine (mass %) 3.28 9.75 18.35 26.99 31.42 34.32 36.85 | t in the raffinate to the layer Benzene (mass %) 94.54 87.46 79.49 71.31 66.46 64.48 59.35 | 4 | 7 | |