Question Paper

Exam Date & Time: 04-Jan-2023 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

V Semester Make-Up Examination, Jan, 2023 Process Modelling and Simulation (CHE-3153)

PROCESS MODELLING AND SIMULATION [CHE 3153]

Marks: 50

Duration: 180 mins.

Page 1 of 2

Section Duration: 180 mins

Descriptive Questions

Answer all the questions.

	Answer all the questions.			
	Miss	ing Data,	if any, may be suitably assumed.	
	1)	A)	A tank contains 10 kg of a salt solution at a concentration of 2% by weight. Fresh solution enters the tank at a rate of 2 kg/min at a salt concentration of 3% by weight. The contents are stirred well and the mixture leaves the tank at a rate of 1.5 kg/min. Determine the salt concentration in the tank in weight % at 3.78 minutes	(4)
		B)	Solve the following system of equations using Newton-Raphson method	(4)
			$x^{3} - 5x^{2} + 2x - y + 13 = 0$ $x^{3} + x^{2} - 14x - y - 19 = 0$	
			Take $x_0 = 8$ and $y_0 = 10$. Perform 2 iteration.	
		C)	Explain the empirical model with an example.	(2)
	2)		List the step by step procedure for modeling any process in chemical engineering.	(4)
		A)		7.43
6		B)	Develop steady state tray composition for a 6 plate absorption column. A linear equilibrium relation holds between liquid x_m and vapor y_m on each plate and is given by $y_m = ax_m + b$. The inlet compositions to the column along with liquid and gas flow rate are known. Briefly give the solution procedure.	(4)
		C)	Compare Rigid and Probabilistic models(any 4 points).	(2)
	3)		Develop the mathematical model of the steady state counter current flow heat exchange in a double pipe heat exchanger. Give brief solution procedure.	(4)
		A) :	Water flows from a conical tank at a rate of 0.02(2+h)2 m3/min. The diameter and height of the	(4)
		B)	conical tank is 8m and 5m respectively. If the tank is initially full, Estimate the time taken for 40% of water to flow out of the tank. What is the flow rate at that time.?	
		C)	List any four assumptions in modelling a ternary component distillation process.	(2)
	4)		Develop the mathematical model for the dynamic response of an unsteady state counter current plug flow heat exchanger	(4)
		A)		(4)
		B)	Derive Finite difference equation and substitute in Heat equation	(4)

C) _ Derive the heat equation

(2)

5) Derive Rachford-Rice equation

(4)

A)

B) Consider a set of reversible reaction:

(4)

$$A \overset{K_1}{\Longleftrightarrow} B \text{ and } B \overset{K_3}{\Longleftrightarrow} C$$

$$K_2$$

Where N_A, N_B, N_C be the moles of A, B,C respectively present at any time t. Since the reaction is constant volume, N_A, N_B, N_C are proportional to concentration. Derive

$$\frac{d^2N_A}{dt^2} + \left(K_1 + K_2 + K_3 + K_4\right) \frac{dN_A}{dt} + \left(\left(K_1 * K_3\right) + \left(K_2 * K_4\right) + \left(K_1 * K_4\right)\right)N_A - \left(K_2 * K_4\right) = 0$$

C) Write briefly about boiling of multicomponent(say A, B,C) mixture

10

----End----