Exam Date & Time: 01-Dec-2022 (02:00 PM - 05:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

.0	V SEMESTER B.TECH END SEMESTER EXAMINATIONS, NOV/DEC 2022 TRANSPORT PHENOMENA [CHE 3154]	
Marks: 50	Duration: 180	mins.
	A	
	the questions.	
	to Candidates: Answer ALL questions Missing data may be suitably assumed	
1)	From the following data, determine the type of fluid that characterizes it.	
A)	Shear Rate, (1/s) 24 170	(2)
	Shear Stress (N/m²) 64 1020	(2)
В)	State and compare the various laws of transport equations.	(3)
C)	Consider a Newtonian fluid at constant density and viscosity is flowing in an annular space between two coaxial cylinders. By performing a momentum balance on a thin shell, derive an expression for	
	the velocity profile and	(5)
	maximum velocity	
2)	An oil is flowing in laminar region in a 2 cm diameter at the rate of 30 L/min. The oil viscosity is 400 cP and its density is 990 kg/m ³ . Calculate	
A)	The wall stress	(2)
	Radial position at which the velocity is equal to average velocity	
B)	In a 0.6 m diameter duct carrying air the velocity profile was found as, $u(m/s) = 0.45$ - $5r^2$ where r is the radius in m. Determine the volume flow rate of the air and the mean	

- B) In a 0.6 m diameter duct carrying air the velocity profile was found as, $u(m/s) = 0.45 5r^2$, where r is the radius in m. Determine the volume flow rate of the air and the mean velocity of flow of air. (3)
- C) A Newtonian fluid flows down an inclined (Ø = angle of inclination with horizontal axis) plane surface in a steady, fully developed laminar film of thickness 'H'. Obtain the expressions for the fluid velocity profile and maximum velocity using Navier-Stokes (5)

equations.

- Consider a large plane wall of thickness L. The wall surface at x=0 is insulated, while the surface at x = L = 5 cm is maintained at a temperature of $T_0 = 30$ °C. The thermal conductivity of the wall, k is constant (30 W/m K) and the heat is generated in the wall at a rate $q_c = q_m \left[exp \left(-0.5 \frac{x}{L} \right) \right] W/m^3$, wherein $q_m = 8 \text{ MW/m}^3$. Assuming steady one-dimensional heat transfer.
 - (4)
 - Obtain a relation for the variation of temperature in the wall by solving the differential equation, and
 - The temperature of the insulated surface of the wall.
 - B) Liquefied gases are stored in well-insulated spherical containers vented to the atmosphere. Develop an expression for the steady state heat transfer rate through the walls of such a container, with the radii of the inner and outer walls being r_o and r_1 respectively and the temperatures at the inner and outer walls being T_o and T_1 . The thermal conductivity of the insulation varies linearly with the temperature from k_o at T_o to k_1 at T_1 .
 - C) Estimate the rate of evaporation (kg/h) of liquid oxygen from a spherical containers of 6 ft inside diameter covered with a 1-ft thick jacket insulation. The following information is available.
 - . Temperature at inner surface of insulation: -183 °C
 - · Temperature at outer surface of insulation: 0 °C
 - Boiling point of O₂: 183 °C (2)
 - · Heat of vaporization of O2: 1636 cal/mol
 - Thermal conductivity of insulation at 0 °C : 0.155 W/m K
 - Thermal conductivity of insulation at 183 °C: 0.1245 W/m K
- Consider the base plate of a 1300 W household iron that has a thickness of 1 cm, base area of 400 cm² and thermal conductivity 20 W/m°C. The inner surface of the base plat is subjected to uniform heat flux generated by the resistance heaters inside and the outer surface loses heat to the surroundings at 20 °C by convection. By taking the outside convective heat transfer coefficient as 100 W/m² °C, evaluate the temperatures at the inner and the outer surfaces.
 - B) A heated sphere of diameter D is placed in a large amount of stagnant fluid. Consider the heat conduction in the fluid surrounding the sphere in the absence of convection. The thermal conductivity k of the fluid may be considered constant. The temperature at the sphere surface is T_R and the temperature far away from the sphere is T_a. Set up the differential equation describing the temperature T in the surrounding fluid as a function of r, the distance from the centre of the sphere and determine the temperature profile.

(Boundary conditions: @r=R, T = T_R and @ $r = \infty$, T = T_a)

- C) Derive an expression for observed reaction rate with pore diffusion for a flat slab catalyst, first order reaction. Also, derive an expression for the effectiveness factor. (5)
- If Thiele-modulus parameter is given by the following expression,

$$\varphi = \frac{V_p}{S_x} \frac{|-r_A|_{C_{AS}}}{\sqrt{2}} \left\{ \int_0^{c_{AS}} D_{As}(-r_A) dC_A \right\}^{-1/2}$$
(2)

Derive an expression ϕ for a flat plate & spherical catalyst, ZERO order reaction.

- B) You have a porous spherical catalyst particle used for a first order reaction with a rate constant of 6.32 min⁻¹ and an effective diffusivity of 3.5 x 10⁻⁴ cm²/min. The concentration of the reactant A at the surface is 100 mM. Determine the concentration (mM) of A between 10 and 1000 micrometer catalyst diameter. (Note: Minimum five concentrations have to be calculated)
- C) A gaseous substrate is consumed by a catalyst at a rate, which is nearly independent of the substrate concentration. Assume that the catalyst is a sphere of radius r, and let k and C₀ be the substrate consumption rate per unit volume and the substrate concentration just inside the catalyst, respectively. Derive an expression for the steady-state substrate concentration profile inside the catalyst, C(r), assuming that the consumption rate is spatially uniform.

----End----