

FIFTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION NOVEMBER 2022

SUBJECT: ANALOG AND DIGITAL COMMUNICATION (ECE - 3151)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.

Q. No.	Questions	M *	C*	A *	B *
1A.	Let x(t) be a periodic signal with period T. The signal is defined over the interval [-T/2, T/2] as follows $x(t) = \begin{pmatrix} 0, & \frac{-T}{2} \le t \le -\alpha T \\ -1, & -\alpha T \le t \le 0 \\ 1, & 0 \le t \le \alpha T \\ 0, & \alpha T \le t \le \frac{T}{2} \end{bmatrix}$ Evaluate the fourier series coefficients a_0, a_n, b_n .	5	1	1,2	4
1B.	Determine the Hilbert transform of the energy signal $x(t) = \begin{cases} 1, & t < \frac{T}{4} \\ 0, & otherwise \end{cases}$	3	1	1,2	3
1C.	State Dirichlet condition to be satisfied for the representation of periodic signal in Fourier series.	2	1	1,2	2
2A.	Consider the set of signals $s_{i}(t) = \begin{cases} \sqrt{\frac{2E}{T}} & \cos(2\pi f_{c}t + i\frac{\pi}{4}), & 0 \le t \le T \\ 0, \text{ elsewhere} & \text{where} \end{cases}$ $i=1,2,3,4 \text{ and } fc=nc/T.$ $i)$ What is the dimensionality, N,of the space spanned by this set of signals.	5	3	1,2	4

MANIPAL INSTITUTE OF TECHNOLOGY

SPIRED	(A constituent unit of MAHE, Manipal)				
	ii)Find a set of orthonormal basis functions to represent this set of signals				
	iii)Using the expansion				
	$s_i(t) = \sum_{j=1}^N s_{ij} \emptyset_j(t) $				
	Find the coefficients s_{ij} .				
	iv)Plot the locations of $s_i(t)$, I=1,2,3,4 in the signal space using the results of parts (ii) and (iii)				
	Given Signal $S(t) = \begin{cases} \frac{a}{2}, & 0 \le t \le T/2 \\ -\frac{a}{2}, & T/2 \le t \le T \end{cases}$				
2B.	Find (i) Plot the impulse response of a filter matched to S(t)	3	3	1,2	3
	(ii) Plot the matched filter output as a function of time				
2C.	The signals $S_1(t), S_2(t)$ and $S_3(t)$ are represented with to two basis functions ϕ_1 and ϕ_2 . The coordinates of these signals are $S_1=(3,0); S_2=(-2,3); S_3=(-3,-3)$, Draw the constellation diagram and express the signals as a linear combination of the basis functions.	2	3	1,2	2
3A.	With neat and labelled diagram, explain the duobinary signaling scheme. Also, explain the error propagation problem in duobinary signaling and how it is resolved by using a precoded duobinary scheme (provide the necessary diagrams and equations).	5	2	1,2	2
	In a binary PCM system, the output signal-to-quantization noise ratio is to be held to a minimum of 25 dB. Find				
3B.	 (i) the number of required levels for a midtread uniform quantizer, (ii) the corresponding output signal-to-quantization noise ratio (in dB) and (iii) the corresponding bit rate, if sampling rate is 6.4 kHz 	3	2	1,2	4
	Show all the intermediate steps.				

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

3C.	With neat and labelled diagram, explain the types of quantization error in delta modulation.	2	2	1,2	2
4A.	Starting from fundamentals derive that the variance of non-uniform quantization error is $\sigma_Q^2 \cong \frac{x_{max}^2}{3L^2} \int_{-x_{max}}^{x_{max}} f_x(x) \left[\frac{dc(x)}{dx}\right]^{-2} dx \text{ mentioning all intermediate steps.}$	5	2	1,2	3
4B.	With neat and labelled block diagrams, explain the generation and demodulation of QPSK.	3	4	1,2	2
4C.	The binary data sequence $1\ 0\ 0\ 1\ 0\ 0\ 1\ 1$ is applied to the input of a DPSK transmitter. Determine the differentially encoded sequence and transmitted phase. Assume initial reference bit as 1.	2	4	1,2	3
5A.	Construct minimum variance Huffman code for the given source probabilities $p_k=[0.1, 0.2, 0.3, 0.4]$. Also determine the entropy, average code length and variance from the given source coding techniques.	5	5	1,2	4
5B.	Prove the following property of mutual information: $I(X;Y) = H(X) + H(Y) - H(X,Y)$	3	5	1,2	3
5C.	State the channel coding theorem (provide the relevant mathematical expressions).	2	5	1,2	2