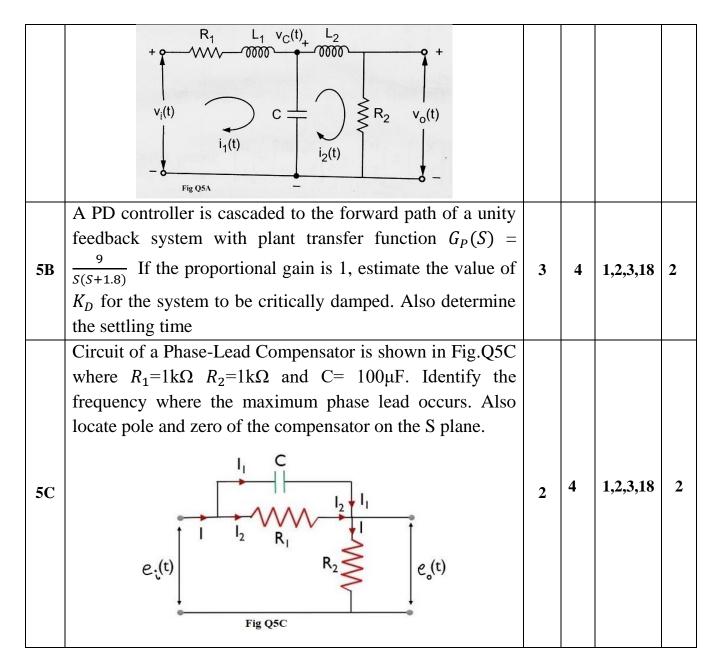
MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

V SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION NOVEMBER 2022 SUBJECT: LINEAR CONTROL THEORY (ECE-3152)

TIME: 3 HOURS


MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.

Q. No.	Questions	M *	C*	A *	B *
1A	Sketch the Nyquist plot for a unity feedback system with OLTF G(S)H(S) = $\frac{1}{s(0.2S+1)(0.05S+1)}$ and determine the gain margin.	5	3	1,2,3,18	3
18	Modify the block diagram shown in Fig.Q1B and develop the closed loop transfer function using block diagram reduction techniques. $f_{R(5)} \xrightarrow{G_1} \xrightarrow{G_2} \xrightarrow{G_3} \xrightarrow{G_6} \xrightarrow{G_7} \xrightarrow{G_7} \xrightarrow{G_1} $	3	1	1,2,18	3
1C	Starting from fundamentals, express rise time of the unit step response of a second order under damped system in terms of its damping ratio.	2	2	1,2,3,18	2
2A	Identify the differential equations governing the mechanical behaviour of the system shown in Fig.Q2A. Draw the FI and FV analogous circuits along with mesh and node equations.	5	1	1,2,18	3

	$ \begin{array}{c} $				
2B	Unity feedback system with $G(S) = \frac{K(S+\alpha)}{(S+\beta)^2}$ is to be designed to meet the following specifications. Damping ratio=0.5; Natural frequency= $\sqrt{10}$ rad/sec; e_{ss} due to unit step input =0.1 Calculate the value of K, α, β	3	3	1,2,3,18	4
2C	The response of a system when subjected to a unit step input is $c(t)=1+0.2e^{-60t}-1.2e^{-10t}$. Calculate the undamped natural frequency and damping ratio of the system	2	2	1,2,3,18	4
3A	Using Routh Hurwitz criteria, analyse the stability of a Type-1 ,3 rd order system with $K_V = 10 sec^{-1}$ and open loop poles located at S= 0,-3 and -6.	5	2	1,2,3,18	4
3B	Examine whether the system characterized by the differential equation $\ddot{Y} + 7\ddot{Y} + 12\dot{Y} + 6Y + U = 0$ is controllable and observable using Kalman's method.	3	5	1,2,18	4
3C	Determine the state transition matrix of the system described by $\dot{x} = \begin{bmatrix} 0 & -1 \\ 2 & -3 \end{bmatrix} x$	2	5	1,2,18	3
4 A	Sketch the Root Locus for a unity feedback system with OLTF G(S)H(S) = $\frac{K}{S(S+1)(S+3)(S+5)}$ and comment on stability.	5	2	1,2,3,18	3
4 B	Starting from fundamentals, express resonant frequency of a second order system in terms of ζ	3	3	1,2,3,18	2
4C	The differential equation of a system is given by $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 16y(t) = 9x(t)$. Calculate the rise time and setting time of the output response when subjected to a unit step input.	2	2	1,2,3,18	4
5A	Represent the circuit shown in Fig.Q5A in state space domain using physical variable form.	5	5	1,2,18	3

M*--Marks, C*--CLO, A*--AHEP LO, B* Blooms Taxonomy Level