		Reg. No.										
ANIPAL INSTITUTE OF TECHNOLOGY												
Tappen at Line (IANIPAL	HF. Manipal)										

DEPARTMENT OF MECHATRONICS V SEMESTER B.TECH. (MECHATRONICS)

MAKEUP EXAMINATIONS, DECEMBER 2022

SUBJECT: DIGITAL SIGNAL PROCESSING [MTE 3151]

(06/01/2022)

Instructions to Candidates:

Time: 3 Hours

MAX. MARKS: 50

Answer **ALL** the questions. *

*	Data not provided, may be suitably assumed
----------	--

Q. No		Μ	CO	РО	LO	BL
1A.	Determine whether the following signals are periodic. If they are periodic, find the fundamental period (a) $x_1[n] = cos(n)$ (b) $x_2[n] = cos(\frac{1}{5}\pi n) sin(\frac{1}{3}\pi n)$ (c) $x_3[n] = \sum_{k=-\infty}^{\infty} \delta[n-3k]$ (d) $x_4[n] = 2sin(\pi^2 n)$	5	1	1	1	3
1 B .	Calculate $h_d(n)$ for a High Pass FIR filter with N=7, and $\omega_p = 2 rad$.	3	3	3	5	5
1C.	Develop cascade realization structure for the IIR digital filter transfer function $H(z) = \frac{1 - z^{-1}}{(1 - 0.5z^{-1})(1 + 0.3z^{-1})}$	2	3	3	5	3
2A.	Compute the signal energy and signal power for the discrete-time signal (a) $y[n] = r[n]$ (b) $x[n] = \left(\frac{1}{2}\right)^n u[n]$	4	1	2	2	5
2B.	Estimate $H(z)$ using the impulse invariant technique for the analog system function $H_a(s) = \frac{2}{(s+1)(s+2)}$ Assume $T = 1s$.	4	3	3	2	6
2C.	Compute 4 pt DFT of causal sequence given by $x(n) = \begin{cases} \frac{1}{3}; 0 \le n \le 2\\ 0; otherwise \end{cases}$	2	2	2	2	5
3A.	Design a digital IIR that satisfies the following constraint using bilinear transformation. Assume $T = 2s$.	5	3	3	5	4

		1				
	0.2 0.2 0.8 2.4 k Hz					
3B.	Convert the analog filter with transfer function $H_{\alpha}(s)$ to digital filter	3	3	2	2	3
	using bilinear transformation					
	1					
	$H_a(s) = \frac{1}{(s+1)(s+3)}$					
3C.	Draw the magnitude response of the filter for the given digital	2	3	2	2	3
000	specifications	-	U	-	-	C
	Stonbard rinnlez- 15dB					
	Deschard ada 1501					
	Passband edge =150Hz					
	Passband attenuation>IdB					
	Stopband edge =100Hz					
	Sampling frequency =1kHz					
4A.	A high frequency hum is getting interfered in a vocal recording, and as	5	3	3	5	5
	a sound engineer, you are asked to design a filter to remove those					
	unwanted signals. Design a filter with 3 dB frequency = 1000π and					
	stopband frequency =2000 π . User requirement for attenuation in					
	stopband \geq 40dB.					
4B.	Consider an LTI system, initially at rest, described by the difference	3	3	3	5	5
	equation					
	y(n) = 0.5y(n-1) - 0.25y(n-2) + x(n) + 0.4x(n-1)					
	i) Determine the transfer function of the system.					
	ii) Construct the direct form I and direct form II realization of this					
	system and comment on the requirement of delay elements for the					
	realization					
40	Design the transfer function of 3 rd order LDE using Butterworth	2	2	2	5	5
40.	Design the transfer function of 5 order EFF using Dutterworth	2	3	4	5	5
5 4	A linear cheer divited filter is to be deviated with 7 as officients as	4	2	2	_	_
5 A.	A linear phase digital liner is to be designed with 7 coefficients $\omega_p =$	4	3	3	5	3
	1 rad					
	1) Identify whether it a low-pass or high-pass. Justify your answer					
	ii) Determine the impulse response $h(n)$ for a rectangular window.					
	Comment of the responses.					
5 B .	Find the optimal order for the filter using Butterworth approximation	3	3	3	5	5
	method, for the given specifications.					
	$0.9 \le H(\omega) \le 1; 0 \le \omega \le 0.2\pi$					
	$ H(\omega) \le 0.2; 0.4\pi \le \omega \le \pi$					
5C.	Analyzing the working of machining processes and its condition	3	4	2	2	6
	monitoring is a significant requirement for ensuring safe and reliable					
	working of industrial equipment. Describe the various signal processing					
	methods which could be employed for analyzing the inputs for condition					
	monitoring.					

[MTE 3151]