MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

VII SEMESTER B.TECH. (AERONAUTICAL/AUTOMOBILE ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2022

SUBJECT: AUTOMOTIVE COMMUNICATION SYSTEM [AAE -4041]

REVISED CREDIT SYSTEM

(28/11/2022)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

Missing data may be suitably assumed.

Q No	Question	Marks	СО	BT	
			attained	level	
1A	Define Second time around echo effect? Derive range	5	CO2	L3	
	equation for following cases:				
	1. With ambiguity				
4.0	2. Without ambiguity		000		
1B	Calculate the maximum range of Radar for the following	3	CO2	L4	
	specifications –				
	1 Deducer for an it dealer the Deduce Dr. 250KW				
	 Peak power transmitted by the Radar, Pt=250KW Gain of transmitting Antenna, G=4000 				
	3. Effective aperture of the receiving Antenna,				
	Ae=4m2				
	4. Radar cross section of the target, $\sigma=25m2$				
	5. Power of minimum detectable signal,				
	Smin=10-12W				
1C	Define:	2	CO1	L1	
	1. Bandwidth				
	2. Modulation and Demodulation				
	3. Bel and Decibel				
	4. Data transfer rate				
2A	Represent (2460)8 in binary.	2	CO1	L1	
2B	A modulating signal m(t)= $10\cos(2\pi \times 103t)$ is amplitude	5	CO2	L4	
	modulated with a carrier signal $c(t)=50\cos(2\pi \times 105t)$.				
	Find the modulation index, the carrier power, and the				
	power required for transmitting AM wave.				
2C	Draw the block diagram of 1×8 De-Mux with the	3	CO1	L2	
	suitable truth table.				
3A	Discuss how the data gets transferred through Bluetooth?	4	CO3	L3	

	What are types of Bluetooth networks?			
3B	Explain the process of trilateration used in GPS? How do satnavs calculate distance from time?	4	CO3	L2
3C	Mention the unique characteristic of LIN communication bus?	2	CO4	L2
4A	Explain any two error handling methods involved in CAN communication protocol?	2	CO4	L3
4B	With the help of Bitwise Arbitration diagram, explainwhich node ID going to win the standard CAN bus?Node Ids are:Node1: $0 \times 6B3 = 11010110011b$ Node2: $0 \times 6D9 = 11011011001b$ Node3: $0 \times 659 = 11001011001b$	5	CO4	L3
4C	Sketch the error transition state diagram and Discuss error confinement mechanisms.	3	CO4	L3
5A	How to find the optimized path from source to destination using AdHoc on demand vector communication protocol? Explain with an example.	5	CO4	L3
5B	Mention the different sensors and systems used in Advanced Driver Assistance Systems (ADAS)?	3	CO5	L4
5C	What are the major applications of inter vehicle communications.	2	CO5	L4