Question Paper

Exam Date & Time: 31-Dec-2022 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

VII SEMESTER B.TECH MAKEUP EXAMINATIONS, DEC JAN 2023

Pattern Recognition [BME 4068]

Α

Marks: 50

Duration: 180 mins.

Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

1)		State the Bayesian Theorem for a K-class problem with d-features when the features are continuous type. Discuss how to design a rule based on likelihood ratio.	(3)
	A)		
	В)	The fasting blood sugar level measured in mg/dL for the group of patients (referred as G1) are given as : 104, 108, 111,117,119, 121, 122,123125,125,126,129. The other group (G2) had sugar measurement as: 88, 89,91, 93,95,95,96, 96,97,99,100,103. Draw histogram with a step size of five. Find an optimal decision boundary between classes and test the following sample 102.	(4)
	C)	The feature " x" is normally distributed for class A, with a mean of 72 and a standard deviation of 3. The class-2 is also normally distributed with a mean of 100 standard deviation of 5. Test the given sample with x=95, by estimating $P(A x=95)$. Given $P(A)=P(B)$.	(3)
2)	A)	The feature "x" is normally distributed for class-A and class-B. Their prior probabilities are P (A) and P (B) respectively 0.5. If the classes are described as: class-A : Mean value of x is 10, and standard deviation of 3. class-B: Mean value of x is 20, and standard deviation of 2. Find the equation of the optimal decision boundary between the two classes for test sample " x=17".	(4)
	B)	Design an complete linkage algorithm for discovering 3 for the given N samples	(3)
	C)	Given: Cluster C1= $\{(5,25), (7, 22)\}$; Cluster C2= $\{(9,20), (10,21)\}$. Calculate following cluster distances between clusters: a. Single linkage distance; b. complete linkage diatnce Note: For the estimation of the sample distance use city block distance	(3)
3)		Compare the artificial neuron and biological neuron	(3)
	A)		
	B)	Realise as OR gate function using a basic McCulloch-Pitts Neuron model. Draw the neuron diagram and test it with an input vector $X = [1 \ 1]T$	(3)
	C)	Explain the training algorithm of a Back propagation network with appropriate weight updating rules.	(4)
4)		Develop K-Means algorithm with the following samples: $(7,20)$, $(8,22)$, $(9,24)$, $(9,25)$ the discover of the clusters	(4)
	A)		
	B)	Given input vector (X) = $[1 1 1]$ T, weight (W) = $[w1 w2 w3]$ = $[0.4 - 0.2 0.7]$. The threshold is 0.5. Find the artificial neuron response.	(3)
	C)	Explain a various important stages need to be emphasised during the design of a classifier for automating healthcare system	(3)
5)		Explain arrhythmia classification system using ECG pattern as input.	(4)

- A)
- B) How performance of classifier are evaluated ?.Explain.
- C) Given the classifier designed for screening patients is tested with a group of 500 samples. Among (3) true positive samples and true negative sample s are respectively 230 and 240. False positive and False negative are respectively 18 and 12. Calculate the Accuracy, sensitivity, and specificity.

-----End-----

(3)