

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

## VII SEMESTER B.TECH (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS

NOV/DEC-2022

## SUBJECT: FINITE ELEMENT METHOD OF ANALYSIS [CIE 4065]

Date of Exam:

Time of Exam: 3 hours

Max. Marks: 50

## Instructions to Candidates:

Answer ALL the questions & missing data may be suitably assumed
Compulsorily write DOF numbers and node numbers wherever required.

| 1A. | Explain principle of minimum potential energy and its application in FEM.                                                                                                                                                                                                                                                | (4) | CO1 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 1B. | Derive shape function for 2 noded bar element.                                                                                                                                                                                                                                                                           | (4) | CO2 |
| 1C  | Derive transformation matrix for 2 noded plane truss element                                                                                                                                                                                                                                                             | (2) | CO3 |
| 2A  | Analyze the bar shown in Figure. Take $E=2\times10^5 N/mm^2$<br>$A_1=500mm^2$<br>$A_2=300mm^2$<br>4m<br>3m                                                                                                                                                                                                               | (7) | CO2 |
| 2B  | Nodal displacements of the bar shown in Figure, is assumed to be [ 0, 0.6mm, 0.9mm] at nodes 1,2 and 3 respectively (from left to right). Determine the member forces in the bar. Take $E=2\times10^5$ N/mm <sup>2</sup><br>$A_1=500$ mm <sup>2</sup><br>$A_2=300$ mm <sup>2</sup><br>$A_2=300$ mm <sup>2</sup><br>$A_m$ | (3) | CO2 |
| 3А  | Analyze the plane truss shown in figure. Coordinates of nodes are given in metres.<br>Take A= 1000mm <sup>2</sup> . E= $1.8 \times 10^5$ N/mm <sup>2</sup><br>$5_{KN}$<br>(4,6)<br>(4,6)<br>(4,6)<br>(4,6)<br>(4,6)<br>(4,6)<br>(4,6)<br>(4,6)<br>(4,6)<br>(4,6)<br>(4,2)                                                | (7) | CO3 |

| 3B  | Explain the procedure to obtain the stiffness matrix of a space truss element in global direction.                                                                                                                    | (3) | CO3 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 4A. | Describe the displacement model and write the shape functions for a 2 noded beam element with neat figure.                                                                                                            | (3) | CO4 |
| 4B. | Analyze the beam shown in the figure. Take EI=3,000 kNm <sup>2</sup> .<br>A 15kN/m B C 6m 30kN C                                                                                                                      | (7) | CO4 |
| 5A. | Determine the strains at (r, s)= $(\frac{1}{2}, 0)$ in a 4-noded element defined by Cartesian coordinates{(0,0),(6,0),(6,7),(0,7)} when the corresponding nodal displacements are {(0,0), (0.1,0.4),(0.4,0.4),(0,0)}. | (7) | CO5 |
| 5B. | Distinguish between plane stress and plane strain problems.                                                                                                                                                           | (3) | CO5 |