

VII SEMESTER BTECH (CIVIL ENGINEERING) END SEMESTER EXAMINATION, NOV 2022 FUNDAMENTALS OF FINITE ELEMENT METHOD (CIE 4082)

17 -11-2022

Time: 3 hrs

Max. Marks: 50

Note: 1. Answer all the questions.

2. Any missing data may be suitable assumed.

Q. No	Questions	MARKS	COS
1A	Illustrate the various types of elements used for finite element analysis	3	CO1
1B	What is displacement model ?. Write the displacement model for i) two noded bar element ii) two noded beam element iii) three noded triangular element iv) four noded quadrilateral element	3	CO1
1C	Illustrate the procedure to obtain the shape functions N1 and N2 for two noded bar element using Lagrange interpolation functions	4	CO1
2A	Evaluate the displacement at nodes for axially loaded bar shown in figure Fig Q 1. Take modulus of elasticity as 2×10^7 kN/m ² . 40 kN $1 m$ $2 m$ $1 m$	5	CO3
2B	Evaluate the matrix C for plane stress condition. Take modulus of elasticity $E{=}2x10^7kN/m^2$ and Poissons ratio $\mu{=}0.3$	2	CO3
2C	Illustrate the procedure to obtain stiffness matrix K for two noded plane truss element	3	CO2
3A	Illustrate the procedure to obtain transformation matrix, T, for two noded space truss element	3	CO2
3B	A beam element of length 4 m is subjected to i) uniformly distributed load of intensity 10 kN/m and ii) point load of 20 kN at 2 m from node 1. Evaluate the equivalent nodal load vectors Q1, Q2, Q3 and Q4 due to these loads		CO3
3C	Forces in global direction for two noded plane frame element are as follows Fx1=20 kN Fy1=-30 kN M1=50 kNm Fx2=-30 kN Fy2=30 kN M2=-20 kNm. If the coordinates at node 1 is (0,0) and node 2 is (2,2), evaluate the forces in local directions	4	CO3
4A	Illustrate the procedure to obtain shape functions N1, N2 and N3 for three noded triangular element	3	CO1

MANIPAL INSTITUTE OF TECHNOLOGY

THE.	(A	constituent	unit	of	MAHE,	Manipal)	
------	----	-------------	------	----	-------	----------	--

4B	The coordinates at nodes for three noded triangular element are (0,0) at node 1, (2,0) at node 2 and (0,2) at node 3. Evaluate the matrix B for the element	3	CO3
4C	Illustrate the procedure to obtain natural coordinates (r and s) for four noded quadrilateral element	4	CO2
5A	Illustrate the procedure to obtain matrix B for four noded quadrilateral element	3	CO2
5B	Evaluate the displacement due to 300 kN load for axially loaded bar of length 3 m and c/s area 0.3 m ² fixed at one end. The constitutive relationship defining the variation of E with displacement q is $E = 2x10^7(1-900q)^2$. Apply the load in three increments	4	CO4
5 C	Illustrate the procedure to obtain the flow matrix (H) for two noded fluid element	3	CO2