Reg. No.

VII SEMESTER B.TECH. (CHEMICAL ENGINEERING) MAKE UP EXAMINATIONS, Jan 2023

SUBJECT: PE-III: INDUSTRIAL WASTEWATER ENGINEERING
[CHE 4057]

REVISED CREDIT SYSTEM

Date: 07/01/2023 Ti

Time: 2.30 to 5.30 pm

MAX. MARKS: 50

Instructions to Candidates:

Answer ALL the questions.

Missing data may be suitably assumed.

1A.	The wastewater has a BOD ₅ equal to 180 mg/l and a reaction rate k equal to 0.22/day. It also has a Total Kjeldahl Nitrogen content (TKN) of 30 mg/l. (i)Find the ultimate carbonaceous oxygen demand (CBOD) (ii)Find the ultimate nitrogenous oxygen demand (NBOD) (iii)Find the remaining BOD after 5 days have elapsed.	(3 marks)		
1B.	Derive Streeter-Phelps equation for oxygen sag analysis and draw the oxygen sag curve	(4 marks)		
1C.	What are the levels of wastewater treatment and classify the treatment process according to the level of advancement?			
2A.	11 1 505-21			
2B.	Describe the following terms along-with their significance (i) Food/Microorganism ratio (ii) Hydraulic retention time (iii) Volumetric Loading rate (iv) Hydraulic Loading rate (v)Recirculation Ratio (vi) Sludge age			
2C.	Draw a bacterial growth curve and explain the significance of various phases. Show that $Y_{obs} = \frac{Y_T}{\left(1 + \frac{k_d}{u}\right)}$			
3A.	Determine the size of high rate trickling filter for the following data:	(4 marks)		

	Flow rate = 4.5 MLD, Recirculation ratio = 1.5	1
	BOD ₅ of raw effluent = 250 mg/lt	
	BOD removal in PST = 30% Find effluent BOD desired.	
	Find effluent BOD desired.	
	NRC Equation	
	Single stage	
	$V.F = \frac{W1}{5.08} \left(\frac{E1}{1-E1}\right)^2$	
	Second stage	
	$V.F = \frac{W2}{5.08} \left(\frac{E2}{(1-E1)(1-E2)} \right)^{2}$	
	$F = \frac{1+R}{(1+0.1R)^2}$	
3B.	Describe any two types of high rate anaerobic reactors with a neat flow diagram?	(3 marks)
3C.	Explain the different modifications of ASP with a neat flow diagram	(3 marks)
4A.	Prepare preliminary designs for a rotary disc type installation to serve 1000 persons	
4A.	Prepare preliminary designs for a rotary disc type installation to serve 1000 persons. Assume 80% BOD removal at an organic load of 20 g BOD ₅ /m ³ .day and 3m diameter discs spaced 5 cm apart on centres. At 54 g of BOD/person.day and 200 lpcd, Flow Q is 200 m ³ /day.	
4A.	Assume 80% BOD removal at an organic load of 20 g BOD ₅ /m ³ .day and 3m diameter discs spaced 5 cm apart on centres. At 54 g of BOD/person.day and 200	(4 marks)
	Assume 80% BOD removal at an organic load of 20 g BOD ₅ /m ³ .day and 3m diameter discs spaced 5 cm apart on centres. At 54 g of BOD/person.day and 200 lpcd, Flow Q is 200 m ³ /day. $Se = \left[\frac{-\kappa_{a,A}}{2Q} \pm \sqrt{\frac{\kappa_{a,A}}{2Q}} + S_0 \right]^2$	(4 marks)
В. С.	Assume 80% BOD removal at an organic load of 20 g BOD ₅ /m ³ .day and 3m diameter discs spaced 5 cm apart on centres. At 54 g of BOD/person.day and 200 lpcd, Flow Q is 200 m ³ /day. $Se = \left[\frac{-K_{0.4}}{2.Q} \pm \sqrt{\frac{K_{0.4}}{2.Q}} + S_{0}\right]^{2}$ where, $K_{0.4} = 2.3$ Explain the importance of measurement of fixed solids, volatile solids and total	

Reg. No.			

MANIPAL INSTITUTE OF TECHNOLOGY

5A.	Example of A Commission of Manipal University	
JA.	Explain the recent developments in membrane filtration and Reverse Osmosis.	(4 marks)
5B.	Distinguish between	(
4	(a) Suspended- and attached- growth processes (b) Aerobic and anaerobic processes (c) Nitrification and denitrification (d) Extended aeration and Conventional ASP process	(4 marks)
5C.	What do you mean by sloughing and what are the advantages and disadvantages of trickling filter?	(2 marks)