Reg. No.

(A constituent unit of MAHE, Manipal)

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE-UP EXAMINATIONS, DECEMBER 2022

CONTROL SYSTEM DESIGN [ELE 4076]

REVISED CREDIT SYSTEM

Time: 3 I	Hours Date: 30 DEC 2022	Max. Marks: 50
Instructions to Candidates:		
*	Answer ALL the questions.	
*	Missing data may be suitably assumed.	
1A.	Given A= $\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$. Compute the eigenvalues, eigenvectors & state transition matrix. Determine the controllability & observability of the following system	ate (03) em
1B. 1C.	$\dot{x} = \begin{bmatrix} -2 & 1 \\ 1 & -1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 2 & 1 \end{bmatrix} x;$ For the system shown below, design a full order state observer s to place the observer poles at -5, -5.	(03) o as
	$\dot{x} = \begin{bmatrix} -1 & 1 \\ 5 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 0 & 1 \end{bmatrix} x;$	(04)

2A. Consider a unity feedback system whose forward path TF $G(s) = \frac{1}{s(s+2\zeta)}$. Determine the value of damping ratio $\zeta > 0$ so that when the system is subjected to unit step input, the following performance index is minimized $\mathbf{J} = \int_0^\infty e^2 + \dot{e}^2 dt$. The system is assumed to be initially relaxed.

2B. Consider a satellite attitude control system whose state space model is given by

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 20 \end{bmatrix} \mathbf{u} \qquad \mathbf{y} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \end{bmatrix} \mathbf{x};$$

Design an optimal control law using Matrix Riccati equation in order to minimize $J = \int_0^\infty (x^2 + u^2) dt$.

3A. Consider a unity feedback system whose forward path transfer function is given by $G(s) = \frac{(s+2)}{s(s+6)}$. Design a lead compensator via root locus method so that the closed loop system will have the following specifications: overshoot =10% and settling time reduced by a factor of 2.

(07)

(06)

(04)

3B. Consider a unity feedback system with

 $G(S) = \frac{1}{S(S+3)}$

Design a proportional controller so that the response of the system with the controller has an overshoot of 15%.

- **4A.** Consider a unity feedback system with open loop TF G(s) $=\frac{10}{(s+1)(s+2)}$. Design a lag compensator in order to improve the steady state error by a factor of 20. **(04)**
- **4B.** What are singular points? How are they classified for a second order linear time invariant system? **(02)**
- **4C.** Find the equilibrium point(s) and linearize the system about the equilibrium point(s). Comment on the stability of the equilibrium point(s) for the following system $\dot{x}_1 = 2x_1 x_1x_2$; $\dot{x}_2 = 2x_1^2 x_2$;
- **5A.** Determine the stability of an equilibrium point using Liapunov's direct method if

$$V(x) = x_1^2 + x_2^2 \& \dot{V}(x) = -2x_1^2 - 2x_2^2 + x_1x_2;$$
(03)

5B. A unity feedback system has G(s)=k/s(s+1)(0.5s+1) cascaded with on-off relay nonlinearity with M=1. Determine the range of gain k for which limit cycle is predicted. Also determine the stability, amplitude and frequency of the limit cycle when gain of the linear system is k=10. The describing function of on-off relay is given by $N = \frac{4M}{\pi X}$.

(07)

(03)

(04)