Reg. No.

VII SEMESTER B.TECH. (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS - NOVEMBER 2022

INTRODUCTION TO ELECTRIC VEHICLES [ELE 4084]

REVISED CREDIT SYSTEM

	REVISED CREDIT STSTEM	
Time	a 3 Hours Date: 17 Nov 2022 Max. Ma	rks: 50
Instru	 ctions to Candidates: Answer ALL the questions. Missing data may be suitably assumed. 	
1A.	Discuss the motivating factors for the growth of electric vehicles and the challenges associated with them in the current scenario.	(03)
1B.	Discuss the possible solutions to address the challenges associated with the mass adoption of electric vehicles.	(03)
1C.	Derive the mathematical equation to determine the road-load power by considering different forces acting on the vehicle.	(04)
2A.	An electric vehicle has the following attributes: drag coefficient, $C_D = 0.25$, vehicle cross-section, $A = 2.5 \text{ m}^2$, and available propulsion energy, $E_b = 20 \text{ kWh}$. Let the density of air be $\rho_{air} = 1.2 \text{ kg/m}^3$. Instantaneously at a vehicle speed of 120 km/h , calculate the aerodynamic drag force, power, and range, while driving in	
	a) Calm conditions with no wind, and	
	b) Windy conditions with a 12 km/h tailwind.	(03)
2B.	The 2015 Nissan Leaf is traveling down an 8° slope at 120 km/h . The vehicle parameters of the Nissan Leaf 2015 model are A = 133.3 N , B = 0.7094 N/ms⁻¹ , and C = 0.491 N/ms⁻² . Assuming calm conditions, how much regenerative power is available to brake the vehicle while maintaining a constant speed?	(03)
2C.	An electric vehicle has an available energy of 90 kWh. Let the efficiency of the powertrain from the battery to the transmission be 85 % and assume the following Tesla Model S vehicle parameters: $A = 177.2 \text{ N}$, $B = 1.445 \text{ N/ms}^{-1}$, and $C = 0.354 \text{ N/ms}^{-2}$.	
	 a) Estimate the driving range of the above electric vehicle at a speed of 120 km/h. 	
	b) Determine the reduction in the range of the above electric vehicle if the	

b) Determine the reduction in the range of the above electric vehicle if the vehicle has a continuous heating, ventilation, and air conditioning load of 6 kW.

(04)

- 3A. Determine the beginning-of-life kilowatt-hour storage required in a battery electric vehicle battery pack based on the following requirements: 6 years of operation, an average of 55 km of driving per day, S_{day}, over the 365 days of the year, daily charging, and an average battery output energy per kilometer, E_{km} = 180 Wh/km. Assume battery pack cycle lifetime index, L = 3 and number of charge\discharge cycles for 100 % depth of discharge, N_{100%} = 1000. Assume two parallel battery strings with 96 Li-ion cells per string, with a total number of cells, N_{cell} = 192, and a nominal voltage of 3.75 V per cell. Assume that the capacity of the battery pack will reduce to 80 % at the end of life.
 - a) Determine the ampere-hours per cell.
 - b) What is the vehicle ranges at the beginning of life and the end of life? (03)
- **3B.** Define state-of-health of a battery and explain the procedure to determine it.
- **3C.** What is cell imbalance? Explain any two cell balancing methods for a given battery pack.
- **4A.** A fully loaded bus has the following parameters: mass, m = 20000 kg, drag coefficient, $C_D = 0.7$, vehicle cross-section, $A = 10 \text{ m}^2$, and coefficient of rolling resistance, $C_R = 0.008$. The nominal efficiency of the powertrain and transmission $\eta_{pt} = 85$ %, and the auxiliary load is 2 kW. Let the density of air $\rho_{air} = 1.2 \text{ kg/m}^3$. The overall mass of the fuel cell system (including the fuel cell, balance of plant, storage tanks, and mechanical bracketing) is **400 kg** plus **80 kg** per **5 kg** of stored hydrogen.
 - a) Determine the hydrogen mass, and the overall mass of the fuel cell system if the vehicle is to travel at a constant speed of 64 km/h for two work shifts of 16 h total, or 1024 km. The fuel cell plant efficiency is 50 % for this operating condition.

b)	Determ	nine	the	mass	of	battery	which	would	be	requi	red	if	the	spec	ific	
energy is 0.15 kWh/kg.										(04)						
									-							

- 4B. With a neat circuit diagram, discuss the working of flyback converter based on-board charger. (03)
 4C. Discuss the features of the permanent magnet synchronous motor and
- explain the control technique employed to regulate its speed. (03)
- **5A.** Explain the different charging methods used for battery electric vehicles, mentioning their specifications.
- 5B. With a neat circuit diagram, explain the role of power electronic converter employed in battery electric vehicle to capture the energy generated during regenerative braking of the vehicle. (04)
- 5C. Explain the importance of thermal management in electric vehicles and mention the causes for thermal runway of the battery pack in electric vehicles.
 (03)

(03)

(03)

(04)