Reg. No.

(A constituent unit of MAHE, Manipal)

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2022

REAL TIME SYSTEMS [ELE 4064]

REVISED CREDIT SYSTEM

Time: 3 H	ours	Date: 30 NOV 2022	Max. Marks: 50
Instruction	ıs to Candidates:		
*	Answer ALL the questions.		
*	Missing data may be suitably a	ssumed.	

- **1A.** Define a real-time system? Explain how real-time systems are different from normal systems. For a suitable example, illustrate the significant hardware components of real-time system, using a block diagram. Explain each block and their interactions.
- **1B.** A real-time preemptive Rate Monotonic Scheduler (RMA) is used to schedule the periodic task set shown in table Q1B with the restrictions throughout its operation as: uniprocessor, period and deadline are relative to arrival time. If priorities of tasks are equal assume a secondary rule of considering the task with lower index as the highest priority. Check the feasibility of the task set using analytical calculations for time demand analysis and verify the same with graphical method.

			•	
Т	Arrival	Period	Execution	Deadline
	(ms)	(ms)	(ms)	(ms)
T1	25	30	10	20
T2	40	40	7	40
T3	60	60	10	50
T4	20	150	25	100

Table Q1B

- **1C.** A cyclic scheduler is to be used to run the following set of periodic tasks (T) on a processor with execution time (e) in (ms) and period (P) in (ms) as given: T_1 ($e_1 = 1$, $p_1 = 4$), T_2 ($e_2 = 1$, $p_2 = 5$), T_3 ($e_3 = 1$, $p_3 = 20$), T_4 ($e_4 = 2$, $p_4 = 20$). Select an appropriate frame size with justification.
- **2A.** Consider a real time system with pre-emptive periodic task (T) set given in table Q2A, Using DMA schedule the tasks on the time line in the time interval [0-250]ms? Verify whether all the tasks meet their deadlines. Assume only task 1 has a phase of 50ms and remaining tasks have zero phase, deadline is relative to the phase.

Table Q2A								
Т	Period	Deadline						
	(ms)	(ms)	(ms)					
T1	50	25	100					
T2	62.5	10	20					
Т3	125	25	50					

(03)

(04)

(04)

(02)

(T2)

ELE 4064

2B. Schedule the task set (T) shown in the table Q2B using Least Slack Time (LST) scheduling method. Show the time-line [0 to 23]ms of the schedule. Show all the intermediate steps in your calculations for schedule. (Assume secondary priority rule of higher index as higher priority)

Table Q2B								
Task	Release	Execution	Deadline					
	(ms)	(ms)	(ms)					
T1	0	10	33					
T2	4	3	28					
T3	5	10	29					

2C. A real time system is operating with 2 tasks and deferrable server (DS) as shown in table Q2C. An aperiodic task of execution time of 1.7ms arrives at a time t=2.8ms. Schedule the given system using earliest deadline first scheduler and calculate the response time for the aperiodic task. Draw the time-line for task scheduling and the server budget consumption graph. Assume deadline and period are relative to the phase.

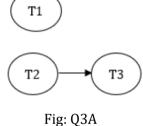
Table	020
lable	Q2C

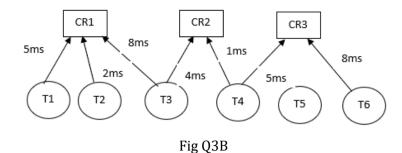
Task	Phase	Period	Execution	Deadline	
		(ms)	(ms)	(ms)	
T1	2	3.5	1.5	3.5	
T2	0	6.5	0.5	6.5	
DS	0	3	1	-	

(04)

(03)

3A. A real time system is having a preemptive latest release time scheduler. The precedence graph and the task set is shown in fig Q3A and table Q3A respectively. Schedule the task set and explain each scheduling step. Show the timeline for the time interval [0-8] ms and check whether all the tasks meet their deadlines.


Table Q3A


Task	Release (ms)	Execution (ms)	Deadline (ms)		
	(IIIS)	(IIIS)	(IIIS)		
T1	2	2	7		
T2	0	3	6		
T3	5	2	8		

- (03)
- **3B.** A system has 6 tasks: T1, T2, T3, T4, T5 and T6. 3 critical resources are shared: CR1, CR2, CR3. Assume tasks have priority values same as their index numbers. Task T_1 has highest priority and task T_6 has least priority.

The resource requirements of these tasks and the duration for which the tasks need the three resources have been shown in fig. Q3B. Compute the different types of inversions that each task might have to undergo for the given task set.

(04)

- **3C.** Explain the working of Priority inheritance protocol (PIP) and Highest Locker protocol (HLP) with the help of suitable examples. What are the limitations of PIP and how does HLP overcome the limitations of PIP.
- **4A.** With suitable examples, answer the following with respect to priority ceiling protocol (PCP)
 - i) How is deadlock avoided in PCP
 - ii) How is unbounded priority inversion avoided in PCP
 - iii) How is chain blocking avoided in PCP
- **4B.** The specifications of set of 10 periodic real-time tasks is shown in table Q4B. Assume that the task set need to run on a multi-processor with four processors and each processor are to be scheduled using RM algorithm. Describe the working of next-fit algorithm and allocate the tasks to the processor using next-fit algorithm.

Table Q4B

Task	T 1	T2	T3	T4	T5	T6	T7	T8	T9	T10
Execution(ms)	5	5	3	1	8	11	1	3	9	17
Period(ms)	10	22	22	24	30	40	50	55	70	75

- **4C.** Explain the working of utilization balancing algorithm for task assignment in a multi-processor real-time system with an example.
- **5A.** Explain the working of global priority and calender based protocol used in real time communication for LAN.
- 5B. A network designed using IEEE802.4 protocol has three nodes: Node 1 needs to transmit 1 MB of data every 300 msec. Node 2 needs to transmit 1.2 MB of data every 500 msec. Node 3 needs to transmit 2 MB of data every 200 msec. Select a suitable Target token rotation time (TTRT) for the network and verify the token holding time for each node. (04)
- **5C.** Justify with proper explanation and example on the requirements for an operating system to be called as a real time operating system.

Page 3 of 3

(02)

(04)

(03)

(04)

(04)

(02)