Question Paper

Exam Date & Time: 28-Nov-2022 (09:00 AM - 12:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

SEVENTH SEMESTER B.TECH END SEMESTER EXAMINATIONS, ICE DEPARTMENT, NOV 2022 Robust Control [ICE 4053]

Α

Marks: 50

A)

Answer all the questions,

Instructions to Candidates: Missing data may be suitably assumed

(i)

Find the general unity negative feedback control system block diagram shown in Fig.1A find 1)

 $\frac{y(s)}{d(s)}$

 $\frac{e(s)}{r(s)}$ (*ii*)

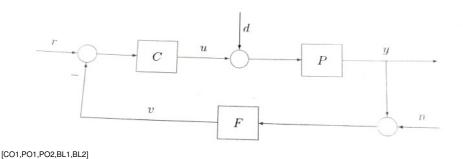


Fig.1A Control system block diagram

(3)

Duration: 180 mins.

(2)

B)

Ρ(ς

C) Consider a plant

(5)

$(s - 2)^2$

and a controller

$C(s) = \frac{X + MQ}{Y - NQ}$

, find X, Y, M & N. Also, find 'Q' under the condition Y=1, reference input signal R=1 and disturbance d=0.

[CO3,PO4,PO5,BL4,BL5]

2) Using Parity Interlacing property comment on the compensator stability for the following transfer functions

(*i*) $P(s) = \frac{s^2 - 3s + 2}{s^2 - 3.9s + 2.7}$ (*ii*) $P(s) = \frac{s}{(s - 1)^3}$

	[CO4,PO3,PO4,PO5,BL4,BL5]	
В	Explain the properties of linear fractional transformation with its necessary equations. Also, write the state and output equations. [CO3,PO1,PO2,BL2,BL3]	(3)
С	Briefly discuss on the Robust stability and Robust performance graphically using disc analysis. Also, summarize various perturbations and its condition.	(5)
	[CO4,PO1,PO2,BL2,BL4]	
3)	Illustrate the loop shaping techniques by summarizing the condition for weighting function W1 and loop transfer function L. [CO3,PO1,PO2,BL2,BL3]	(2)
А		
В	Derive the weighting functions of W1 and W2 for advanced loop shaping techniques.	(3)
	[CO5,PO3,PO4,PO5,BL3,BL4]	
С	Explain the controller design procedures for the P inverse stable and unstable processes with the help of filter J and improper transfer function Q [CO5,PO4,PO5,BL5,BL6]	(5)
4)	Find FI(P,K) for the general unity feedback control with r, n and d signals with necessary linear fractional transformation diagram. [CO4,CO5,PO6,BL4,BL5]	(2)
A		
В	Write the partition matrix structures for the following	(3)
	i. Full information problem.	
	ii. Disturbance feed-forward problem.	
	iii. Output estimation problem. [CO2,CO3,PO1,PO2,BL1,BL2]	
С	Using a state space method obtain the coprime factorization of the plant	

(5)

$$P(s) = \frac{s-1}{s(s-2)}, \text{ given } F = [-1 - 3] \& L = [-4 - 9]^{-1}$$

. Verify using Bezout's Identity.

[CO5,PO4,PO5,BL3,BL4,BL5]

5)

	Write the improper transfer function Q formula with the condition involving RHS zero and gamma. [CO4,PO5,PO6,BL3]	(2)
A)		
B)	Address the model mismatch problem using gamma. [CO3,CO4,PO3,PO4,BL2]	(3)
C)	Derive for the solution for the modified problem involves transforming it into the model mismatch problem. [CO5,PO5,PO6,PO5,BL5]	(5)

-----End-----