Reg. No.					

DEPARTMENT OF MECHATRONICS VII SEMESTER B.TECH. (MECHATRONICS)

MAKEUP EXAMINATIONS, [Jan] [2023]

SUBJECT: ROBOT PATH PLANNING AND MOBILE ROBOTS

SUBJECT CODE: MTE 4061 DATE: 07/11/2022 Time:3 Hrs. MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data if any can be suitably assumed.

Q. No	Question	M	CO	PO	LO	BL
1A.	Identify the following with a broad application-oriented with detailed explanation. a. Dead Reckoning b. Accelerometer	5	CO1	1,2	1	3
1B.	Illustrate the legged locomotion and locomotion mechanism found in nature with neat sketches.	3	CO1	1,2	1	3
1C.	Illustrate in detail about the tracked slip or skid locomotion.	2	CO1	1,2	1	3
2A.	Determine the angular velocity of all the wheels in the figure given below. Wheel 1 Pigure No.: Q-1A	5	CO2	1,2	1	3
2B.	Illustrate about the kinematics mobile robot animation in MATLAB of a mobile robot through pseudo code using Euler equation.	3	CO2	1,2	1	3
2C.	Determine the degree of maneuverability for the four wheeled Mecannum wheel drive robot as shown in the below figure:	2	CO2	1,2	1	3

[MTE 4061] Page **1** of **2**

	Figure No.: 2B					
3A.	Illustrate about the skid steer Mecannum wheel four-wheel drive locomotion strategy for moving forward, backward and side wards and establish a code for achieving the above movements through pseudo code.	5	CO3	1,2	1	3
3B.	Illustrate the following terms with neat sketches: a. Statistically stable legged robot b. Dynamically stable legged robot c. Hopping Robots	3	CO3	1,2	1	3
3C.	Illustrate about the Holonomic and Non-Holonomic constraints for mobile robots?	2	CO3	1,2	1	3
4A.	Derive the relation of dynamics for wheeled mobile robot using Lagrangian method	5	CO3	1,2	1	4
4B.	Illustrate the significance of the hexapod robot performing motions.	3	CO3	1,2	1	3
4C.	Demonstrate the SLAM methodology for unknown environment exploration.	2	CO3	1,2	1	3
5A.	Explain below algorithms with neat sketches a. Configuration Space of two Revolute joint manipulator b. Artificial Potential Fields	4	CO4	1,2	1	3
5B.	Analyze, if a point robot is moving in an obstacle environment for reaching target location from source location. Identify the configuration space for the below environment given in the figure. Start Figure 5B	4	CO4	1,2	1	4
5C.	Explain the path planning technique - visibility graph with the	2	CO4	1,2	1	3
	help of a neat sketch.					

[MTE 4061] Page **2** of **2**