iteg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

DEPARTMENT OF MECHATRONICS VII SEMESTER B.TECH. (MECHATRONICS) END SEMESTER EXAMINATIONS, [Nov] [2022]

SUBJECT: ROBOT PATH PLANNING AND MOBILE ROBOTS

SUBJECT CODE: MTE 4061

DATE: 30/11/2022

Time:3 Hrs.

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data if any can be suitably assumed.

Q. No	Question	Μ	CO	РО	LO	BL
1A.	Identify each the following with a broad application-oriented explanation for underwater exploration.a. Autonomous Underwater Vehicle and its limitationsb. Remotely Operated Vehicle and its limitations	5	CO1	1,2	1	3
1 B .	Select the relevance of autonomous navigation technique on a flying robot using sensors such as Accelerometers, Gyroscopes and Global Positioning System.	3	CO1	1,2	1	4
1C.	Illustrate with neat diagram about the Inertial measurement Unit Strapdown algorithm.	2	CO1	1,2	1	3
2A.	Analyze the angular velocity of all the three wheels in the figure given below which is symmetrically arranged by the wheels. Assume necessary parameters.	5	CO2	1,2	1	4
2 B .	Illustrate with neat diagram about the Joint – Space versus cartesian description in trajectory planning of the robot.	3	CO2	1,2	1	3
2C.	Determine the degree of maneuverability for the below figure given:	2	CO2	1,2	1	3

	Figure No.: 2C					
3A.	Compose the mobile robot animation of a particular length and width through pseudo code in MATLAB. Establish a relation for converting the transformation for the moving mobile robot for animation.	4	CO3	1,2	1	4
3B.	Categorize the different types of wheels and their classification with neat sketches.	4	CO3	1,2	1	3
3C.	Demonstrate about the Holonomic and Non-Holonomic constraints for mobile robots?	2	CO3	1,2	1	3
4A.	Analyze the relation of dynamics for wheeled mobile robot using Lagrangian method	5	CO3	1,2	1	4
4B.	Considering a hexapod examine the gait analysis for forward locomotion with neat sketches.	3	CO3	1,2	1	3
4 C .	Interpret, how to navigate the environment in the absence of GPS and external motion capture cameras? Demonstrate the methodology.	2	CO3	1,2	1	3
5 A .	Analyze the below algorithms with neat sketchesa. Probabilistic Road Mapsb. Rapidly random exploring trees	5	CO4	1,2	1	4
5B.	Signify the challenges of a path planning technique called potential fields	3	CO4	1,2	1	3
5C.	Explain the path planning technique - visibility graph with the help of a neat sketch.	2	CO4	1,2	1	3