	Reg. No.									
ANIPAL I	NSTITUT	Ъ.	OF	TE	CF	IN	OL	00	GΥ	
MANIPAL (A constituent unit of MA										

DEPARTMENT OF MECHATRONICS VII SEMESTER B.TECH. (MECHATRONICS)

END SEMESTER EXAMINATION, NOVEMBER 2022

SUBJECT: SOFT ROBOTICS [MTE 4062]

(Date: NOVEMBER 28, 2022)

Time: 180 Minutes

MAX. MARKS: 50

Instructions to Candidates:

* Answer all the questions.

Q. No		Μ	CO	РО	LO	BL
1A.	Analyze thermal actuators used in soft robots. With neat sketches explain the fabrication process of the bimorph thermal actuator.	5	1	1,2	1	3
18.	Illustrate with neat diagrams the Multi-material Additive Manufacturing techniques for constructing a functional Soft robot with the help of a relevant example.	3	1	1	1	3
1C.	Interpret the 3D Printing Techniques with relevant details.	2	1	1	1	4
2A.	Distinguish the various functional materials, fabrication strategies along with their applications used in stretchable electronics.	5	1	1,2	1	3
2B.	Explain the relevance of Soft Materials used in Soft Robot Manipulations. List any 2 soft materials used for fabricating soft robots along with their properties.	3	1	2,3	1,4	3
2C.	Explain the working principle and mention the types of material used for fabricating textile strain sensors	2	2	3,4,5	2,3	3
3A.	Explain with neat diagrams the working principle, the material used for fabrication for HASEL Artificial Muscles	5	2	1,2	1	3
3B.	Describe a polymer-based Sensors. Analyze how does shape memory polymers work? Distinguish the properties of shape memory polymers?	3	3	1	1	4

3C.	Illustrate any of the Dielectric elastomer	2	1	3,4,5	2,3	3
	applications with the help of its working principle.					
4 A.				1,2	1	3
	the different classes of soft robotic actuators.					
4B.	Sketch neat diagrams of a bending actuator. Interpret			1,2	1	3
	the materials used for constructing and elaborate on					
	the working principle of PneuNets (pneumatic					
	networks)					
4C.	Distinguish the materials used for the fabrication of	2	3	2,3	1,4	3
	pneumatic networks.					
5 A		_	2	1.0	1	2
5A.	By applying kirigami-inspired sensors illustrate	5	3	1,2	1	3
	how soft robots can create awareness of the motion					
	and position of their bodies efficiently.					
5 B .	Illustrate the fabrication of a microfluidic chip by	3	4	2,3	1,4	3
	soft-lithography methods using poly-					
	dimethylsiloxane (PDMS).					
5C.	Analyze 3D Continuum Mechanics related to Finite	2	4	3,4,5	2,3	3
	Element Methods employed for modelling soft					
	robots.					