Question Paper

Exam Date & Time: 31-Jan-2023 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATION - DECEMBER 2022 I SEMESTER B.Sc. (Applied Sciences) in Engg.

MATHEMATICS-I [IMA 111 - S2]

Marks: 50 Duration: 180 mins.

Answer all the questions.

1) If
$$y^{1/m}+y^{-1/m}=2x$$
 show that
$$(x^2-1)y_{n+2}+x(2n+1)y_{n+1}+(n^2-m^2)y_n=0\;. \eqno(4)$$

Find the angle of intersection of the curves : $r^2 sin2\theta = 4$, $r^2 = 16 sin2\theta$

A curve is given by $x=asin\theta$, $y=bcos2\theta$. Find the radius of curvature at $\theta=\frac{\pi}{3}$

2) If $r^2 = x^2 + y^2 + z^2$, $v = r^m$ prove that $v_{xx} + v_{yy} + v_{zz} = m(m+1)r^{m-2}$

Find the circle of curvature for the curve $y^2=4ax$ at $(at^2,2at)$.

Expand $f(x, y) = e^x siny$ in powers of x and y using Taylor's series up to third degree terms. (3)

3) Find the extreme values of the function (4)

A) $f(x,y) = x^3 + y^3 - 3x - 12y + 2$.

Evaluate using reduction formula: $\int_0^1 x^2 (1-x^2)^{\frac{3}{2}} dx$ (3)

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2n-1}{n(n+1)(n+2)}$ (3)

- Find the area bounded by the curve $xy^2 = 4a^2(2a x)$, a > 0
 - and its asymptote
 - Evaluate using reduction formula: $\int_0^1 \frac{x^7 dx}{\sqrt{1-x^4}}$ (3)
 - Evaluate $\lim_{x \to \frac{\pi}{2}} (sinx)^{tanx}$ (3)
- (a) State and prove Rolle's theorem. (4)
 - (b) Verify Rolle's theorem for the function $f(x) = e^x \left(sinx cosx \right) \text{ in } \left[\frac{\pi}{4}, \frac{5\pi}{4} \right].$
 - If the limit of $\frac{\sin 2x + a \sin x}{x^3}$ as x tends to zero, be finite, find the value of 'a' and the limit
 - C) Expand $tan^{-1}x$ in powers of (x-1) up to terms containing x^4 .

----End-----