Question Paper

Exam Date & Time: 20-Dec-2022 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATION - DECEMBER 2022 I SEMESTER B.Sc. (Applied Sciences) in Engg.

MATHEMATICS - 1 [IMA 111]

Marks: 50 Duration: 180 mins.

Answer all the questions.

1) If
$$y = \cos(m \sin^{-1} x)$$
 show that
$$(1 - x^2) y_{n+2} - x(2n+1) y_{n+1} + (m^2 - n^2) y_n = 0$$
 Find $y_n(0)$

Find the angle of intersection of the curves
$$r = \frac{a}{1+\theta^2}$$
, $r = \frac{a\theta}{1+\theta}$ (3)

If
$$\rho$$
 be the radius of curvature at any point P on the parabola $y^2 = 4ax$ and S be the focus then show that the radius of curvature at P varies as $(SP)^{3/2}$.

If
$$u=f(r)$$
 and $x=r\cos\theta, y=r\sin\theta$ prove that
$$u_{xx}+u_{yy}=f''(r)+\frac{f'(r)}{r}$$

Find the circle of curvature for the curve
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
 at $(\frac{a}{4}, \frac{a}{4})$.

Expand
$$f(x,y) = \sin(xy)$$
 in powers of $(x-1)$ and $(y-\frac{\pi}{2})$ using Taylor's series up to second degree terms.

Find the extreme values of the function
$$f(x,y) = xy(a-x-y) . (a > 0)$$

Test the convergence of the series by comparison test
$$\sum_{n=1}^{\infty} \frac{(n+1)(n+2)}{n^2 \sqrt{n}}$$

Evaluate using reduction formula:
$$\int_0^a \frac{x^4 dx}{\sqrt{a^2 - x^2}}$$
 (3)

4)

- A) Trace the curve: $xy^2 = 4a^2(2a x)$, a > 0
- Evaluate using reduction formula: $\int_0^2 x^3 \sqrt{2x x^2} dx$ (3)
- Evaluate $\lim_{x\to 0} \left(\frac{a^x+b^x}{2}\right)^{\frac{1}{x}}$ (3)
- (a) State and prove Cauchy's mean vale theorem.
 - (b) Verify Cauchy's mean value theorem for the function f(x) = logx and $g(x) = \frac{1}{x}$ in [1,e]
 - Evaluate $\lim_{x\to 0} \frac{\sin x x + \frac{x^8}{6}}{x^5}$ (3)
 - Obtain the Maclaurin's series expansion of $\log (1 + e^x)$ up to terms containing x^4 .

----End-----