Question Paper

Exam Date & Time: 21-Dec-2022 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATION - DECEMBER 2022 III SEMESTER B.Sc. (Applied Sciences) in Engg.

ANALOG ELECTRONIC CIRCUITS [IEC 231 - S2]

Marks: 50

Duration: 180 mins.

Answer all the questions.

Missing data may be suitably assumed.

- ¹⁾ Draw the circuit diagram of common base configuration using NPN transistor. ⁽⁵⁾ Draw and explain the input and output characteristics. Indicate cut-off,
 - A) saturation and active regions.
 - ^{B)} A fixed bias circuit with silicon transistor with β =100 is used. Draw the DC load ⁽⁵⁾ line and determine the operating point. Given R_B=200K Ω , V_{cc}=10V and R_C=2K Ω . Assume V_{BE}=0.7V. Neglect I_{CO}. Draw the circuit diagram.
- With the help of a circuit diagram, explain the working of transformer coupled ⁽⁵⁾
 Class B push pull power amplifier. Derive an expression for the maximum power efficiency. Mention one drawback of this amplifier.
 - ^{B)} Draw the circuit diagram of Low Frequency Model of MOSFET and explain. ⁽⁵⁾ Write the expressions for the cutoff frequency of the amplifier.
- ³⁾ Assuming $\lambda = 0$, $V_{TH} = 0.4V$ and $\mu_n C_{ox} = 100 \ \mu\text{A}/\text{V}^2$, compute $W/_L$ of M₁ ⁽⁵⁾ _{A)} in **Fig. Q3A** such that the device operates at the edge of saturation.
 - A) In Fig. Q3A such that the device operates at the edge of sati $-V_{DD} = 1.8 V$

- B) State Barkhausen criteria for sustained oscillations. Draw the circuit diagram of ⁽⁵⁾ Hartley oscillator and explain its working. Write the expression for frequency of oscillations.
- ⁴⁾ With the help of a block diagram, explain positive feedback. Derive an

(5)