

I SEMESTER M.TECH. (ENVIORNMENTAL ENGG.) END SEMESTER EXAMINATIONS Jan 2023 SUBJECT: COMPUTATIONAL METHODS AND OPTIMIZATION TECHNIQUES [MAT 5160]

Time: 3 hrs Max. Marks: 50

Instructions to Candidates:

❖ Answer ALL the questions. Use of STATISTICAL TABLES is permitted

1A.	Maximize $z = x + 1.5$ y given $x \ge 0$ y ≥ 0 subjects to the conditions $x + 2y \le 160$, $3x + 2y \le 240$ by graphical method.	3M
1B.	Find the pdf of $Y = 8X^3$ if X has the pdf $f(x) = \begin{cases} 2x; 0 \le x \le 1 \\ 0; elsewhere \end{cases}$.	3M
1C.	The function u satisfies the equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$ and the conditions, $u(x,0) = 100 \ (x-x^2)$, and $u_t(x,0) = 0, 0 \le x \le 1, u(0,t) = u(1,t) = 0, for \ t > 0$. Use the finite difference scheme to calculate u for 4 time steps with $h = 0.25$	4M
2A.	Solve $(x^3 + 1)$ y" $+x^2$ y' $-4xy = 2$, $y(0) = 0$, $y(2) = 4$ with $h = 0.5$.	3M
2B.	Find the m.g.f of the random variable X which is uniformly distributed over (-a, a). Evaluate E (X^{2n})	3M
2C.	A random sample of size 15 from a population $N(\mu, \sigma^2)$ yields \overline{X} = 3.2 and S^2 = 4.24. Find 90% confidence interval for σ^2 .	4M

MAT5106 Page 1 of 2

3A.	The diameter of an electric cable say 'X' is assumed to be a continuous random variable with the following pdf. $f(x) = \begin{cases} 6x(1-x) & ; & 0 < x < 1 \\ 0 & ; otherwise \end{cases}$ (i) Obtain an expression for pdf (ii) Find b such that $P(x < b) = 2P(x \ge b)$ (iii) Find $P\left(X < \frac{1}{2} \frac{1}{3} < X < \frac{2}{3}\right)$.	3M
<i>3B</i> .	In a normal distribution, 7% of the items are under 35 and 89% are under 63. Find the mean and variance of the distribution.	<i>3M</i>
3C.	Let \overline{X} denote the mean of a random sample size 50 from the distribution χ^2 . Compute an approximate value of Pr $\{49 < \overline{X} < 51\}$.	4M
4A.	Two independent random variables X_1 and X_2 have mean values 5, 10 and Variance 4, 9. Find covariance between $U = 3X_1 + 4X_2$ and $V = 3X_1 - 5X_2$.	3M
4B.	The Mendelian theory states that the probabilities of classification a, b, c,d are respectively $\frac{9}{16}$, $\frac{3}{16}$, $\frac{3}{16}$, $\frac{1}{16}$ from a sample of size 160. The actual observed numbers were 86,35,26,13. Is this data consistent with the theory at 0.05 significance level.	3M
4C.	Let \overline{X} and S^2 be the mean and variance of a random sample of size 25 from the distribution $N(3,100)$. Evaluate i) $P(X < 6)$ ii) $P(55.2 < S^2 < 145.6)$	4M
5A.	A two dimensional random variable (X, Y) is uniformly distributed over the triangular region $R = \{(x, y) / 0 < x < y < 1\}$. Find i) $P(Y > 1)$ ii) $P(X+Y<1/2)$ (iii) $Cov(X,Y)$	5M
5B.	Let X_1, X_2, \dots, X_n denote a random sample of size n from $N(\theta_1, \theta_2)$ with usual domain. Find Maximum likelihood parameter (MLE) for θ_1, θ_2	5M