

DEAPRTMENT OF MECHATRONICS I SEMESTER M. TECH (INDUSTRIAL AUTOMATION AND ROBOTICS) END-SEMESTER EXAMINATION – JANUARY 2023

Subject: Analog and Digital Electronics (PE-1)

Subject Code: MTE 5001

Time: 3 hours Exam Date & Time: 5th Jan. 2023; 9:30 AM to 12:30 AM Max. Marks: 50

Instructions to Candidates:

* Answer ALL the questions.

• *Missing data may be suitably assumed and justified.*

• For problems, digital and analog circuit with appropriate symbols may be given.

Write your Name, Registration Number, Roll Number at top of every page of the answer sheet.

Q .	Problem Statement	Μ	CO	LO	PO	B
No.						L
Q1A.	Construct the circuit to realize the below given output voltage using one op-amp and passive components: $V_0 = -2V_1 + V_2 + 2V_3$ where V_1 , V_2 and V_3 are the input voltages.	05	4	1	4	6
Q1B.	Analyse the circuit given in FIG. 1B showing equivalent circuit. Plot the output waveform assuming ideal diode. Identify the circuit with justification. $v_i \rightarrow v_i $	03	3	1, 2	4	4
Q1C.	Determine the output voltage of an op-amp based circuit in FIG. 1C when $V_1 = 1$ V and $V_2 = -1$ V.	02	4	1	4	5

	100 kOhm					
	$\frac{1}{200 \text{ kOhm}}$					
	V2+					
	= FIG 1C					
Q2A	The turns ratio of a transformer used in a Full-wave Bridge Rectifier is 12:1. The	05	3	1,2	4	3
	primary of transformer is connected to the power mains 220 V, 50 Hz.					
	Neglecting diode voltage drops,					
	(a) find the DC voltage across load resistor,					
	(b) what is the PIV of the diode?					
	what is the PIV?					
Q2B.	Given that the dc load line cuts the x-axis and y-axis of output characteristics of	03	3	1,2	4	6
	BJT at 20 V and 8 mA respectively. Given that $I_B = 40 \ \mu A$ and $\beta = 50$, design			,		
	a fixed bias circuit. Find the value of operating point.					
Q2C.	The current gain β for the transistor in the circuit shown in FIG. 2C is 25. Determine R_B such that $V_0 = 8.8$ V when $V_I = 5$ V.	02	3	2	4	3
	$V_{EE} = 9 V$					
	¢					
	R _B					
	Vo					
	j					
	$\stackrel{>}{\leq}$ Rc = 500 Ohm					
	ş					
	FIG. 2C					
Q3A.	Consider both 4-bit binary code and 4-bit gray code (let the gray code be	05	1	2	4	6
	reflective with respect to LSB). Solve for 4-bit Binary-to-Gray code converter logic circuit considering the K-map. Give the logic circuit implementation of					
	same.					
Q3B.	For the circuit in FIG. 3B , determine the expression for V_o .	03	4	1,2	3,4	5
		1				1

	$ \begin{array}{c} e_{4} \circ & & R \\ e_{3} \circ & & & V_{1} \\ e_{3} \circ & & & V_{2} \\ e_{1} \circ & & & \\ e_{2} \circ & & & \\ \end{array} $ FIG. 3B					
Q3C.	Compare BJT and FET with respect to following parameters:	02	3	3	4	2
	(i) Input control, (ii) Temperature sensitivity, (iii) Input impedance (for CE, CS)					
Q4A.	[i] For the circuit shown in FIG. 4A , find the following: a) the output voltage b) the voltage drop across series resistance c) the current through Zener diode. $ \frac{R = 5 k\Omega}{I} \qquad I \qquad I_{L} \qquad I_{Z} \qquad I \qquad I \qquad I_{Z} \qquad I \qquad $	05	3,5	1,2	4	3
Q4B.	 Draw the circuit of 4-bit binary weighted resistor DAC. Given that V_{ref} = 8 V. Compute the following: (a) Resolution in voltage. (b) Full-scale output voltage. (c) Output voltage V_o for digital input b₃b₂b₁b₀= 0011 	03	3	2	4	3
Q4C.	Why 2's complement is considered better than 1's complement? Illustrate with an example.	02	1	2	4	2

Q5A.	 [i] A logic circuit has 3 inputs and 1 output variable. The output is at logic 1 when two or more inputs are at logic 1. Write the truth table. Simplify the SOP expression using Boolean algebra and realize using NAND gates. Comment on the logic circuit. [ii] Build the optimal realization of half-subtractor using only (a) NAND gates, (b) NOR gates. Compare number of NAND/ NOR gates required. 	05	1	2	4	3
Q5B.	Construct 4-bit PISO shift register using JK flip-flops and asynchronous parallel- load feature. Explain the working of the same.	03	2	2	4	6
Q5C.	Construct the logic circuit for a 4-bit ripple counter using D flip-flop. Given the time period of the output waveform of last flip-flop is $64 \ \mu$ s. Find the frequency of clock used.	02	2	2	4	3