	Reg. No.									
		1.000								
MANIPAL I	NSTITUT	Е (DF	TE	CF	IN	OL	00	GΥ	

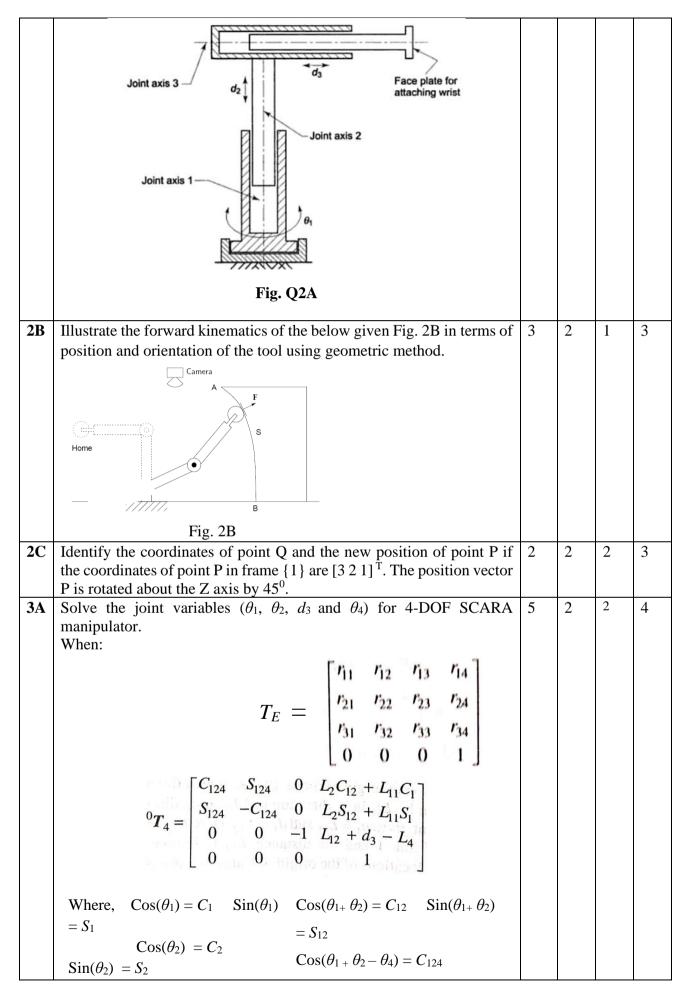
DEPARTMENT OF MECHATRONICS I SEMESTER M TECH. (INDUSTRIAL AUTOMATION AND ROBOTICS) END SEMESTER EXAMINATIONS, [Jan] [2023] SUBJECT: ROBOT KINEMTICS AND DYNAMICS

SUBJECT CODE: MTE 5151

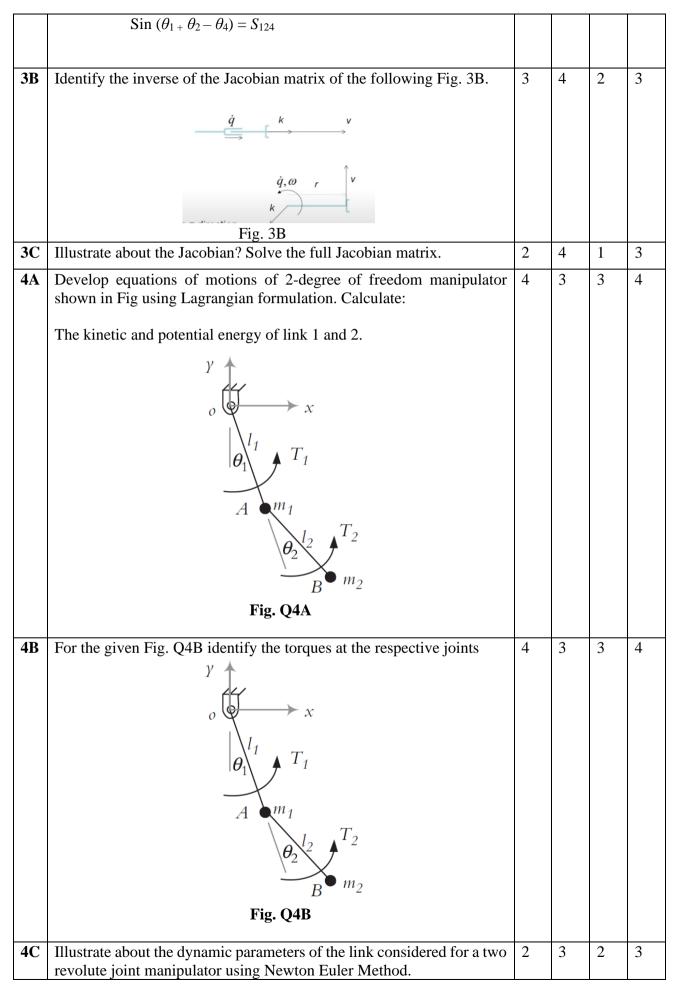
MANIPAL

(A constituent unit of MAHE, Manipal)

DATE:07/01/2023


Time: 09:30 to 12:30 AM

MAX. MARKS:50


Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data if any can be suitably assumed.

Q. No	Question	Μ	CO	LO	BL
1A	Illustrate the classification of the robots based on geometry/kinematic arrangements with neat sketches in detail.	5	1	2	3
18	Identify the DH table of the following 2RP configuration which is shown in the Fig. 1B. Joint 3 Joint 2 Joint 2 Joint 3 Joint 1 Joint 1 Fig 1B	3	2	2	3
1C	Illustrate the sensor cycle interaction of the real time environment with a neat diagram		1	2	3
2A	Assign the frames, find D-H table, and transformation matrix ${}^{0}T_{3}$ of 3-DOF, RPP configuration arm shown in Fig.Q2A using D-H convention.	5	2	2	4

[MTE 5151]

5A	Illustrate Trajectory Planning? Demonstrate the third-order polynomial		4	2	3
	trajectory planning?				
5B	Using a third-order polynomial, calculate the joint angle at 1, 2, and 4		4	2	3
	seconds, if the first joint of a 6-axis robot go from initial angle of 30°				
	to a final angle of 75^0 in 5 seconds.				
5 C	Define the following:		4	1	3
	(i) Knot Points				
	(ii) Spline				