Rey. NO.									
ANIPAL INSTITUTE OF TECHNOLOGY									
MANIPAL									

DEPARTMENT OF MECHATRONICS FIRST SEMESTER M.TECH. (MECHATRONICS)

END SEMESTER EXAMINATIONS, JANUARY 2023

SUBJECT: SIGNAL PROCESSING AND APPLICATIONS [MTE 5008]

(03/01/2023)

Instructions to Candidates:

Time: 3 Hours

* *

MAX. MARKS: 50

Answer ATT

Answer **ALL** the questions.

Data not provided, may be suitably assumed

Q. No		Μ	CO	РО	LO	BL
1A.	Determine whether the following signals are periodic. If they are periodic, find the fundamental period (a) $x_1[n] = cos(n)$ (b) $x_2[n] = cos(\frac{1}{5}\pi n) sin(\frac{1}{3}\pi n)$ (c) $x_3[n] = \sum_{k=-\infty}^{\infty} \delta[n-3k]$ (d) $x_4[n] = 2sin(\pi^2 n)$	4	1	1	1	3
1B.	Estimate the signal energy and signal power for the discrete-time signal (a) $y[n] = r[n]$ (b) $x[n] = \left(\frac{1}{2}\right)^n u[n]$	3	1	2	2	5
1C.	Compute 4 pt DFT of causal sequence given by $x(n) = \begin{cases} \frac{1}{3}; 0 \le n \le 2\\ 0; otherwise \end{cases}$	3	2	2	2	5
2A.	Calculate $h_d(n)$ for a High Pass FIR filter with N=7, and $\omega_p = 2 rad$.	3	3	3	5	5
2B.	Compute $H(z)$ using the impulse invariant technique for the analog system function $H(s) = \frac{1}{(s+0.5)(s^2+0.5s+2)}$ Assume $T = 1s$.	4	3	3	2	6

2 C	For the given specifications of digital IIR filter, find the optimal					
	order of the filter.					
	mag					
	1	2	2	2	5	5
	0.8	3	3	3	5	5
	0.2					
	0.8k 2.4 k Hz					
3A.	Design a digital Butterworth filter that satisfies the following					
	constraint using bilinear transformation. Assume $T = 1s$.					
	$0.9 \le \left H(e^{jw}) \right \le 1, \qquad 0 \le w \le \pi/2$	5	3	3	5	6
	$ H(e^{jw}) < 0.2, \qquad 3\pi/4 < w < \pi$					
3B.	Convert the analog filter with transfer function $H_{\alpha}(s)$ to digital	3	3	2	2	3
	filter using bilinear transformation.					
	(s + 0.1)					
	$H_a(s) = \frac{1}{(s+0.1)^2 + 9}$					
3C.	Draw the magnitude response of the filter for the given digital	2	3	2	2	3
	specifications					
	Lower stopband edge = 200 Hz					
	Lower passband edge = 100 Hz					
	Upper stopband edge = 300 Hz					
	Upper passband edge = 700 Hz					
	Stopband attenuation = 35 dB					
	Passband ripple = 0.3 dB					
	Sampling frequency = $3kHz$					
4A.	A low frequency hum is getting interfered in a vocal recording, and	5	3	3	5	5
	as a sound engineer, you are asked to design a filter to remove those					
	unwanted signals. The digital specifications of the required filter					
	are given below.					
	Stop band ripple $< 10 \ dB$					
	Pass band edge = 150 Hz					
	Pass band attenuation $> 2dB$					
	Stop band edge $=100$ Hz					
	Sampling frequency =1kHz					
4B.	Consider an LTI system, initially at rest, described by the difference	3	3	3	5	5
	equation					
	y(n) = 0.25y(n-1) + 0.5y(n-2) + 2x(n) - 0.7x(n-1) + 0.2x(n-2)					
	i) Determine the transfer function of the system.					
	ii) Construct the direct form I and direct form II realization of this					
	system and comment on the requirement of delay elements for the					
	realization					
4 C.	Design the transfer function of 4 th order LPF using Butterworth	2	3	2	5	5
	approximation.	_	-	_	-	-
	approximation.					

5A.	A linear phase digital filter is to be designed with 11 coefficients	4	3	3	5	5
	for the following specifications					
	Passband cut off frequency = 0.50 kHz					
	Sampling Frequency = 2 kHz					
	i) Identify whether it a low-pass or high-pass. Justify your answer					
	ii) Determine the impulse response $h(n)$ for Hanning window.					
	Comment of the responses.					
5B.	With proper design steps compute the transfer function of an analog	3	3	3	5	6
	filter using Butterworth approximation method, for the given					
	specifications. Use impulse invariant transformation.					
	$0.8.6 \le H(\omega) \le 1; 0 \le \omega \le 0.25\pi$					
	$ H(\omega) \le 0.3; 0.35\pi \le \omega \le \pi$					
5C.	EEG (electroencephalogram) is a non-invasive technique used to	3	4	2	2	6
	measure the brain's electrical activity by detecting the voltage					
	fluctuations on the scalp. Describe the various signal processing					
	methods which could be adopted for analyzing such signals.					
	Comment on the various applications for which those signal					
	processing methods could be employed.					