Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

MANIPAL INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATHEMATICS IV SEMESTER B.TECH. (AUTOMOBILE ENGINEERING) MAKE-UP EXAMINATION

Subject (Name & Code): Engineering Mathematics IV & MAT 2252

Date of Examination:

Time:

MAX.MARKS: 50

Q. No.	Question								Μ	CO	PO	BL	
	Use simplex method to <i>maximize</i> the objective function $z(x, y) = x + 3y$ subject to the constraints:												
1A.	$\begin{array}{c} x + 2y \le 10 \\ x \le 5 \end{array}$								4	6	1	3	
	$y \leq 4$												
	$x, y \ge 0.$												
1B.	An investor has Rs 20 lakhs with her and considers three schemes to invest the money in for a year. The expected returns are 10%, 12%, and 15% for the three schemes per year. The third scheme accepts only up to 10 lakhs. The investor wants to invest more money in scheme 1 than in scheme 2. The investor assesses the risk associated with the three schemes as 0 units, 10 units and 20 units per lakh invested and does not want her risk to exceed 500 units. Formulate a linear programming model (LP model) to maximize her profit (no need to solve the LP model).									3	6	1	3
1C.	Find out the me Class: Frequency:	edian a 10- 20 5	20- 30 9	a from 1 30- 40 14	the follo 40- 50 20	wing dat 50- 60 25	ta: 60- 70 15	70- 80 8	80- 90 4	3	1	1	3
2A.	A car repair is either on time or late and either satisfactory or unsatisfactory. If a repair is made on time, then there is a probability of 0.85 that it is satisfactory. There is a probability of 0.77 that a repair will be made on time. What is the probability that a repair is made on time and is satisfactory?								4	3	1	3	
2B.	In a game a player either loses \$1 with a probability 0.25, wins \$1 with a probability 0.4, or wins \$4 with a probability 0.35. What are the expectation and the standard deviation of the winnings?							3	3	1	3		

Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

2C.	In a partially destroyed laboratory record, only the lines of regression of <i>y</i> on <i>x</i> and <i>x</i> on <i>y</i> are available as $4x - 5y + 33 = 0$ and $20x - 9y = 107$ respectively. Calculate means of <i>x</i> , <i>y</i> , and the coefficient of correlation between <i>x</i> and <i>y</i> .	3	2	1	3
3A	In a normal distribution, 31% of the observations are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution.	4	5	1	3
3B	Despite a series of quality checks by a company that makes television sets, there is a probability of 0.0007 that when a purchaser unpacks a newly purchased television set it does not work properly. If the company sells 250,000 television sets a year, estimate the probability that there will be no more than 200 unhappy purchasers in a year.	3	5	1	3
3C	Investments are made in ten companies, and for each company there is a probability of 0.65 that the investment will deliver a profit. What is the probability that at least half of the investments will deliver a profit? What is the expected number of companies that will deliver a profit?	3	5	1	3
4 A	For a distribution, the mean is 10, variance is 16, γ_1 is +1 and β_2 is 4. Find the first four moments around the origin.	4	2	1	3
4 B	On average there are four traffic accidents in a city during one hour of rush- hour traffic. Use the Poisson distribution to calculate the probability that in one such hour there are (a) no accidents (b) at least two accidents.	3	5	1	3
4C	The mean annual salary paid to all employees of a company was annual salary paid to all employees of a company was \$5000. The mean annual salaries paid to male and female employees were \$5200 and \$4200, respectively. Determine the percentage of males and females employed by the company.	3	1	1	3
5A	A fair coin is tossed three times, and the random variable X is the number of heads in the first two tosses and the random variable Y is the number of heads in the last two tosses. What is the joint probability mass function of X and Y? What are the marginal probability mass functions of X and Y?	4	4	1	3
5B	Let $f(x, y) = k(x + y), 0 < x, y < 1$ be the joint PDF of the random vector (X, Y) . Find the value of k. Hence compute $E(XY)$.	3	4	1	3
5C	Find the initial basic feasible solution of the following transportation problem using Vogel approximation method (VAM): $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	6	1	3