Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

MANIPAL INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATHEMATICS IV SEMESTER B.TECH. (AUTOMOBILE ENGINEERING) END SEMESTER EXAMINATION

Subject (Name & Code): Engineering Mathematics IV & MAT 2252

Date of Examination: 24-05-2023 Time: 2.30 PM-5.30 PM

MAX.MARKS: 50

Q. No.	Question								Μ	CO	РО	BL			
1A.	Determine whether the following data set mesokurtic:										4	1	2	4	
	x	1	2	3	4	5		6	7	8	0				
	f(x)	8	28	56	70	56)	28	8	1	1				
1 B .	The mean annual salary paid to all employees of a company was \$5000. The mean annual salaries paid to male and female employees were \$5200 and \$4200, respectively. Determine the percentage of males and females employed by the company.										3	1	1	3	
1C.	Calculate the mean and standard deviation of the following frequency distribution:							3	1	1	3				
	Size o Frequ	f item: ency:		6 3	7 6	8 9	9 13	10 8	C	11 5	12 4				
2A.	Calculate the coefficient of correlation and obtain the least square regression line of y on x for the following data:					t square	4	2	1	3					
	x y	1 9	2 8	3 10	4 12	5 11	6 13	3 1	7 14	8 16	9 15				
2B.	The two regression equations of the variables x and y are $x = 0.7y + 5.2$ and $y = 0.3x + 2.8$. Find (i) mean of x, (ii) mean of y and (iii) the correlation coefficient between x and y.								3	2	1	3			
2C.	Let $X \sim B(N, p)$. Compute the generating function of X. Hence compute the expectation and variance of X.								3	4	1	3			
3A	Maximize the objective function $z(x, y) = 2x + 4y$ subject to the constraints:						4	6	1	3					
	$x + 2y \le 5$														
	$\begin{array}{l} x+y \leq 4 \\ x, y \geq 0 \end{array}$														

Reg. No.						
----------	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

3B	Show that the following LP has no feasible solution: Maximize $z = 3x + 2y$								1	3
	subject to Maximize $z = 5x + 2y$									
	$2x + y \le 2$									
	$3x + 4y \ge 12$									
	$x, y \geq 0.$									
3C	Formulate the follo need to solve the Ll) 3	6	2	4					
	Old hens can be bought for Rs.200.00 each but young one costs Rs.500.00 each. The old hens lay 3 eggs per week and young ones 5 eggs per week, each egg being worth Rs.3. A hen costs Rs.100.00 per week to feed. If you have only Rs.8000 to spend for purchasing the hens, then how many of each kind should you buy to have a maximum profit per week assuming that you cannot house more than 20 hens.									
4A	Suppose that X is a random variable and has a Poisson distribution with parameter α . If $3P(X = 2) = 2 P(X = 1)$, then calculate the parameter α . Also, calculate $P(X = 0)$ and $P(1 < X \le 3)$.								1	3
4B	Show that the sum Poisson random var	n of two independent Poisson random variables is a variable.							1	3
4 C	Find an initial basic feasible solution of the following problem using VAM:							6	1	3
		D_1	D ₂	D_3	D_4	Supply				
	<i>O</i> ₁	5	3	6	2	19				
	0 ₂	4	7	9	1	37				
	<i>O</i> ₃	3	4	7	5	34				
	Demand 16 18 31 25									
5A	Minimize the objective function $z(x, y) = 4x + y$ subject to the constraints:							6	1	3
	$3x + y = 3$ $4x + 3y \ge 6$									
	$x + 2y \le 4$									
	$x, y \ge 0.$									
5B	Find the optimal solution for the following transportation problem:							6	1	3
	I II III Demand									
	Α	1	2		6	7				
	В	0	4		2	12				
	С	3	1		5	11				
	Supply 10 10 10									