Question Paper

Exam Date & Time: 29-May-2023 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

FOURTH SEMESTER B.TECH END SEMESTER EXAMINATIONS, MAY 2023

DIGITAL SYSTEM DESIGN [BME 2253]

Marks: 50 Duration: 180 mins.

Α

Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

Solve using minimum CMOS transistor network that implements the functionality of Boolean equation $Y = A \cdot (B + C) + CD$ (4)

A)

B) Explain with a neat diagram the structure of *Standard cell*

(4)

C) Identify any two differences between *Full custom* and *Semi custom design*

(2)

2) Design a 2:1 MUX with the help of block diagram and corresponding truth table using pull up and pull down transistors

(4)

A)

B) Design a 2:1 MUX with the help of Shannon's expansion theorem for the given function

(4)

$$F = \overline{w1} \ \overline{w3} + w1w2 + w1w3$$

C) Deduce the given Boolean function using CMOS TX gate

(2)

$$F = AB + \overline{AC} + A\overline{BC}$$

3) Solve the following function using *PAL*

(4)

- A) $f1 = x1 \times x2 \times x3 + x1 \times x2 \times x3 \quad and \quad f2 = x1 \times x2 + x1 \times x2 \times x3$
- B) Solve the following function using **PLA**

(4)

$$f1 = x1 x2 + x1 \overline{x3} + \overline{x1} \overline{x2} x3$$

and $f2 = x1x2 + \overline{x1} \overline{x2} x3 + x1 x3$

C) Generalize any two differences between PLA and PAL

(2)

4) Design a JK Flip flop with the relevant circuit using *Gate level Verilog code*

(4)

A)

	В)	Design a SR Flip flop with the relevant circuit using Data Flow Verilog code	(4)
	C)	Design a half adder with the relevant circuit using Gate level Verilog code	(2)
5)		Design <i>CMOS SR Latch using NAND gates</i> with a) Circuit diagram of SR Latch b) Truth table of SR Latch c) Pull up and pull down circuit.	(5)
	A)		
	B)	Summarize any three differences between <i>CPLD</i> and <i>FPGA</i> .	(3)
	C)	Explain Moore's law with the corresponding diagram	(2)
		End	