Question Paper

Exam Date & Time: 24-May-2023 (02:30 PM - 05:30 PM)

FOURTH SEMESTER B.TECH END SEMESTER EXAMINATIONS, MAY 2023

INTEGRATED CIRCUIT SYSTEMS [BME 2254]

Α

Marks: 50

Duration: 180 mins.

Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

A voltage follower circuit has a 1V signal and a $20k_{\Omega}$ load. The source is connected via a $47k_{\Omega}$ (4)

resistor. Select a suitable value of R1. (Assume $I_{Bmax} = 500 nA$)

A)

1)

- i. Calculate Load voltage
- ii. When load is directly connected to source
- iii. When the voltage follower is between load and the source
- iv. Calculate the maximum voltage drop across each resistor R1 and Rs

B)

Design a non-inverting amplifier circuit which is capable of providing a voltage gain of 15. Assume (3) an ideal-opamp and the resistances should not exceed $30k_{\Omega}$ (Draw the circuit)

C) Find
$$V_{\alpha}$$
 in the circuit if $R_f = 10k\Omega$, $R_1 = 2k\Omega$ and $R_2 = 5k\Omega$ (3)

2)

3)

A)

Design a Differentiator using Opamp for an input signal with f_{max} =200Hz. Also draw the output (5) waveforms for a sine wave and square wave input of 1V peak at 200Hz sampling frequency (show at least 2 cycles).

B) For a given op-amp PSRR = 70db (min), CMRR = 10^5 , differential mode gain $A_d = 10^5$. If the (3) output voltage changes by 20 V in 4ms, calculate. (a) PSRR in Numerical Value (b) Common mode gain

(c) Slew Rate

C) For the following inverting Schmitt trigger circuit, calculate the higher and lower trigger points (2)

Using 741 op-amp, design a first order active low pass filter to have a cut-off frequency of 1kHz (4) (Draw the circuit). A)

B) Explain the working of Voltage to current converter (floating load) with a circuit and expressions. (3)

C) Explain the operation of inverting zero cross detector for an input of triangular wave (draw the circuit (3)

and corresponding output waveforms).

- A clinician needs help from a biomedical engineer to measure a clean ECG waves. But the waves (5) contain unnecessary frequency components especially 100 Hz. Suggest and design a solution:
 A)
 - i. Which first order active filter would you choose to denoise?
 - ii. Design the selected filter and explain its frequency response.
 - B) Design a monostable multivibrator using 555 timer to obtain a pulse width of 10ms. (3)
 - C) Explain the terms line regulation and load regulation for a DC voltage regulator with a circuit and (2) expected graphs
- 5) Explain the schematic of the Phase locked loop with the capture transient graph. (4)
 - A)
 B) Determine the output voltage produced by an 8 bit D/A converter whose output range is 0 to 12 v (3) and whose input binary number is:
 - i. 10111101
 - ii. 11001101
 - iii. 11100110
 - C) Explain the role and operation of an op-amp in the conversion of digital input to analog output using (3) a 3-bit DAC circuit

-----End-----