

MANIPAL INSTITUTE OF TECHNOLOGY

FOURTH SEMESTER B. TECH (CIVIL ENGINEERING) END SEMESTER EXAMINATION, MAY 2023 STRENGTH OF MATERIALS (CIE 4306)

(-06-2023)

TIME: 3 HRS.

MAX. MARKS: 50

Note: 1. Answer all questions.

2. Any missing data may be suitably assumed.

Q. NO	QUESTION	MARKS	CO	BL
1A	Draw SFD and BMD for the single overhanging beam supported at A and B is subjected to loading as shown in figure. Mark all salient points and inflection point.			
	A $\rightarrow 4m$ $\rightarrow 4m$ $\rightarrow 4m$ $\rightarrow 4m$ $\rightarrow 4m$ $\rightarrow 4m$	6	1	3
1B	Derive the relationship between load, shear force and bending moment.	4	5	2
2A	A simply supported beam of span 8m carries a UDL of 20 kN/m over its entire span. The c/s of the beam is a rectangle 150 mm x 200 mm deep. Draw the shear stress distribution at 1m from the left support, by considering horizontal fibres 50 mm apart from top to bottom in the cross section.	6	2	3
2B	Define pure bending and list the assumption made in pure bending theory.	4	2	2
3A	Determine the deflection and slope at free end for loaded beam shown in figure. Take EI constant.			
	A B 2m 1m D	5	3	3

3B	Determine the deflections at points C and D for the beam loaded as shown in figure. Take E=2x10 ⁵ MPa; I= 60x10 ⁸ mm ⁴ . 5kN	5	3	3
4A	Show that a hollow shaft is stiffer than a solid shaft of same material, length, and weight subjected to pure torsion.	5	4	2
4B	A solid shaft is required to transmit 245 kW power at 240 rpm. The maximum torque is 50% more than the mean torque. The shear stress in the shaft is not to exceed 40 N/mm^2 and the twist 1° per meter length. Determine the minimum diameter required. Take $G = 80 \text{ kN/mm}^2$,	5	4	3
5A	Determine the Euler's crippling load for a column of 4m long with hinged at both ends. The section details of column as follows: (T-section) flange of 150 mm (wide) x 20 mm (deep) and web of 20 mm (wide) x 100 mm (deep), overall depth of section is 120 mm. Take E = 200 GPa.	5	5	3
5B	A hollow cylindrical cast iron column is 4m long with both ends fixed. Determine the minimum diameter of the column using Rankine's formula, if it has to carry a safe load of 250 kN with a factor of safety of 2. Take the internal diameter as 0.8 times the external diameter. Take Rankine's constant as σ_C =550 MN /m 2 , a= 1/1600.	5	5	3