Reg. No.	W.					

IV SEMESTER B.TECH. (CIVIL ENGINEERING) MAKEUP EXAMINATION, JUNE / JULY 2023

SUBJECT: WASTE WATER MANAGEMENT [CIE-2254]

DATE: -5 - 2023

TIME OF EXAM: -

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL questions.
- Missing data may be suitably assumed.
- Draw neat sketches wherever necessary.

SL.	QUESTIONS	MARKS	CO's	BL
1A.	Explain the estimation of quantity of sewage and flow variations in sewage.	05	CO1	2
1B.	Explain in brief the systems of sewage disposal.	03	CO1	2
1C.	Explain in brief the significance of nitrogen content in waste water.	02	CO2	2
2A.	Explain the working principle of Trickling filters with a flow diagram. Give the comparison between activated sludge process and trickling filters.	05	CO3	2
2B.	Explain the following: i) First stage BOD ii) Population equivalent iii) Relative stability	03	CO2	2
2C.	Explain with a neat sketch the working of a leaping weir.	02	CO1	2
3A.	Design a high-rate trickling filter for the following data. Sewage flow is 3.5 MLD, Recirculation ration is 1.5, BOD of the raw sewage is 300 mg/l, BOD removal in primary clarifier is 35%, Organic loading rate is 11000 kg BOD/ ha-m.d. Hydraulic loading rate is 20m³/m²/d. Also find the effluent BOD concentration.	05	CO4	3
3B.	Design a circular settling tank for a primary treatment of sewage at 12 million liters per day. Detention period 2 hrs & surface loading of 40,000 liters/sq.m/day.	03	CO4	3

CIE 2254 Page 1 of 2

Reg. No.					
rtog. 110.					

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

3C.	Explain in brief the different types of traps according to their use.	02	CO1	2
4A.	 A conventional Activated sludge process treatment plant data is as follows: Wastewater Flow = 15000 m³/d, Volume of aeration tank = 3500 m³ BOD influent = 250 mg/l, BOD effluent = 20 mg/l Mixed liquor suspended solids (MLSS) = 2500 mg/l Effluent suspended solids = 30 mg/l, Waste sludge suspended solids = 9700 mg/l Quantity of waste sludge = 120 m³/d Determine the Aeration period in hours, F/M ratio, % efficiency of BOD removal and Sludge age in days 	05	CO4	3
4B.	With the help of a neat sketch explain the step aeration and tapered aeration process of ASP.	03	CO3	2
4C.	Explain the following design parameters commonly used in ASP: i) F/M ratio ii) Sludge age	02	CO3	2
5A.	With the help of a neat sketch explain the working of a septic tank.	05	CO5	2
5B.	Give the comparison between the dilution and land treatment method of sewage disposal.	03	CO5	2
5C.	Explain the meaning of sewage sickness and the measures to reduce it.	02	CO5	2

CIE 2254 Page 2 of 2