

MANIPAL INSTITUTE OF TECHNOLOGY

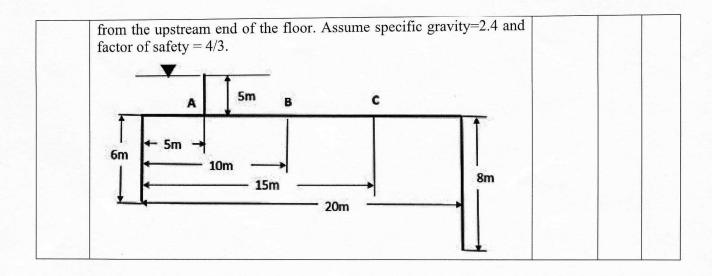
FOURTH SEMESTER B.TECH (CIVIL ENGINEERING)

END SEMESTER EXAMINATION, MAY 2023

WATER RESOURCES ENGINEERING (CIE 2255)

(xx - xx - 2023)

TIME: 3 HRS.


MAX. MARKS: 50

Note: 1. Answer all questions.

2. Any missing data may be suitably assumed.

Q. NO	QUESTION	MARK S	СО	BL
1A	The rainfall values recorded by stations located at three of the successive corners of a square are 30, 35, 40 and 20 cm respectively. Determine the average rainfall by the Theissen Polygon method and compare it with simple average.		1	4
1B	Justify the statement "Failure of water resource project or a hydraulic structure is due to improper assessment of hydrological factors"	2	1	3
1C	A small watershed consists of 2 km ² of cultivated area (C = 0.2), 3.5 km ² of forest land (C = 0.1), and, 2.0 km ² of grass land (C = 0.35). If the average intensity of rainfall over the entire watershed area is 20 mm/h, Calculate: (i) The average depth of runoff; (ii) Peak Discharge; and, (iii) Yield from the watershed. Duration of rainfall = 150 min.		2	4
2A	The table below gives the ordinates of 4hr UH. Determine the ordinates of 12hr UH. Plot the 4hr and 12 hr UH. Time (hr) 0 4 8 12 16 2 24 28 32 36 40 4-hr UHO (cumec) 0 36 90 93 68 4 34 23 13 6 0	4	3	4
2B	Determine the design flood discharge allowing an increase of 35 % over the estimated flood peak for a bridge site having the following data Catchment area - 500km² Observed Max. storm precipitation-15mm for 400 mir duration Time of Concentration - 3 hr Gauged discharge during the past flood was 9 ×10 ⁴ m³/min for	TORREST OF THE PROPERTY OF T	3	4

	an average max. daily rainfall of 30 cm.			
C.	List the uses of Flow-Duration Curves	2	3	3
3A	List the advantages of dam? Explain briefly on the major forces acting on gravity dam.	4	4	3
3B	What are the essential requirements that the spillways should satisfy to ensure the safety of the dam. List the types of spillways?	3	4	3
3C	Discuss the circumstances where i. arch dam is preferred over gravity dam.	3	4	3
	ii. arch dam is not preferred over gravity dam.			
4A	Test the stability of the 22m high gravity dam section, shown in figure for overturning, sliding and development of tension.	5	4	4
	 Given: Specific weight of concrete = 23.5 kN/m³ Co-efficient of friction = 0.7 Uplift area factor = 1 and uplift intensity factor is 0.65. 			
	MWL — 4 m			
	20 m			
4B	8 m Explain the purpose of providing the following masonry works across	2	5	
ı	irrigation canals i. Canal Drops ii. Canal Regulators	7 7 (4) (8 (4)		
4C	What is diversion head work? Sketch the layout and enumerate the component parts	3	5	
5A	Compare the structure and features of a barrage with that of a weir.	2	5	
5B	Discuss the causes of failure of weir on a permeable foundation due to sub-surface flow. Also suggest suitable methods of preventing it.	4	5	
5C	The figure shows the section of a weir founded on sand. Calculate the average hydraulic gradient. Calculate uplift pressures below the foundation specifying the floor thicknesses at points 5, 10 and 15m	4	5	

