		Reg.No.										
--	--	---------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH. COMPUTER SCIENCE & ENGINEERING (AI&ML) END SEMESTER EXAMINATION, MAY 2023

SUBJECT: ARTIFICIAL INTELLIGENCE [CSE 2271] REVISED CREDIT SYSTEM --/05/2023

Time: 3 Hours

MAX. MARKS: 50M

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1A.	List and describe the various disciplines that acted as the foundations of artificial intelligence.	(4M)	CO1		
1 B .	1B. Differentiate simple reflex agent and model based agents with suitable diagrams and pseudocodes.				
1C.	Describe the task environment properties for the following task environments with appropriate justifications. i) Medical Image Analysis ii) Chess with a clock iii) Health checkup iv) Part picking robot	(2M)	CO2		
2A.	In the following undirected unweighted graph, consider " a " as the source node and " g " as the goal node. Identify the path between the source to destination using Breadth First Search (BFS) and Depth First Search (DFS) algorithms. Show the tree generation steps along with the queue and visited nodes lists for every step. Also, compare the performance of BFS and DFS with standard performance evaluation metrics.	(4M)	CO3		

	a b c d e f g b i i k i i i k i i i k i i i i i i i k i i i i i i i k i i i i k i i i k i i i k i i i k i i k i i i k i		
2B.	Discuss the 5 phases of genetic algorithm with a suitable pseudocode and an example.	(4M)	CO2
2C. Rob is planning to move this summer from Ha graph below, the vertices represents towns and cost of tolls that needs to be paid while trave another. Rob needs to your advice in plannin minimize the total amount paid for tolls. Wha should take and how much would he have to pa tolls? Identify the best algorithm to solve given 15 Unnwice Hatting an another of the total and the top and	Rob is planning to move this summer from Harwich to Maldon. In the graph below, the vertices represents towns and the edges represent the cost of tolls that needs to be paid while travelling from one town to another. Rob needs to your advice in planning the trip; he wants to minimize the total amount paid for tolls. What route do you think he should take and how much would he have to pay over the entire journey tolls? Identify the best algorithm to solve given problem.	(2M)	CO3
3A.	Consider the following graph to find the shortest path between the cities "Arad" to "Bucharest" using BFS and A* Search algorithms. Show the tree formation, path and total cost to reach the goal city "Bucharest". (The values given in "red" are heuristic values)	(5M)	CO3

	Arad 7 7 7 7 7 7 7 7 7 7 7 7 7		
3B.	Figure 3A Solve the following cryptarithmetic problem using Constraint	(3M)	CO3
50.	Satisfaction Problem logic. CROSS + ROADS = DANGER.		
	Constraints:		
	1. Each Letter, Symbol represents only one digit throughout		
	the problem.		
	2. The value for each letter is ranging between (0 to 9)		
3C.	Perform the minimax algorithm for given problem and show the optimal path.	(2M)	CO3
	Max		
	Min		
	Max Min 4 3 5 2 1 4 2 3 5 4 7 3 2 1 4 0 5 3 0 2 7 4 3 6 5 3 1		
	Figure 3C		
4A.	Represent the following statements using predicate logic.	(4M)	CO4
••••	i) The best score in Greek is always higher than the best score in	()	
	French		
	ii) Every person who buys a policy is smart.iii) No person buys an expensive policy		
	iv) There is a barber who shaves all men in the town who do not shave		
	themselves.		
	v) Politicians can fool some of the people all of the time, and they can		
	fool all of the people some of the time, but they can't fool all of the		
	people all of the time vi) A person born outside the UK, one of whose parents is a UK citizen		
	vij A person born butside die OK, one of whose parents is a OK chizen		

			Table 5B			7		
	$\neg cavity$	0.016	0.064	0.144	0.576	1		
	cavity	0.108	0.012	0.072	0.008			
		catch	$\neg catch$	catch	$\neg catch$			
		toothache ¬toothache						
	P(Cavity toothache V catch) using Bayes Theorem.							
	Computer conditional probabilities $P(Toothache cavity)$ and $P(Cavity toothache V catch)$ using Bayes Theorem							
	likelihood of ea	ch possible o	combination o	f the variable	es.	it the		
	and catch world patient with a	·	1					
5B.	to calculate the probability of disease given symptoms.Below is an example of a full joint distribution for the toothache, cavity, and catch worlds, and it describes the presence or absence of cavities in a						(4M)	CO5
	meningitis give	-		• •	•	s' rule		
	that the patient l	nas meningiti	is. What is the	likelihood of	f the patient h	aving		
	and the prior probability of any patient having a stiff neck is 2%. Let s be the proposition that the patient has a stiff neck and m be the proposition							
5A.	Given that a do time, and the pr		0				(4M)	CO5
5 4		atau lu anna t	hat manine aid		$ff_{max} = 500/$	of the		
4C.	Describe the different properties of forward and backward chaining with an example?				g with	(2M)	CO4	
	$< t \Rightarrow \neg T(f, t)$							~
	Happens(e, (t)	!, t2)) ∧ Tern	ninates(e, f, tl	$) \land \neg Restore$	ed (f, (t1, t)) ,	1 <i>t</i> 1		
	is false at time	· -		· · · · · · · · · · · · · · · · · · ·		unen j		
	interval $(t1, t2)$ (ceases to be true	, and <i>e</i> initia	tes a fluent f	at time tl , a	nd f is not cl	ipped		
	ii) The below	axiom state	es that if an	event <i>e</i> hanr	ens over the	time		
	Happens(e, $(t1)$ T(f, t)	, t2)) ∧ Initia	ates(e, f, tl) ∧	─Clipped(f,	(t1, t)) A t1 -	$< t \Rightarrow$		
	be true) during time <i>t</i> . Justify the				t1, then f is t	rue at		
4B.	i) The below ax $(t1, t2)$, and e in	nitiates a flue	ent f at time tl	, and f is not	clipped (cea	ses to	(4M)	CO4
	viii) There is an insured.	agent who s	sens policies (nity to people		L		
		ent, is a UK o	citizen by birt	h.				