

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

IV SEMESTER B.TECH. (COMPUTER SCIENCE & ENGINEERING) END SEMESTER MAKEUP EXAMINATION, MAY 2023

SUBJECT: OPERATING SYSTEMS [CSE 2272] REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50M

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

1 4	XX7 ' , 1 1 1		C 1 11	1 .1		• 1 •		· 1 C		DO	
1A.	Write bankers algorithm for dead lock avoidance. Considering a system with five processes P0 through P4 and three resource types A, B, C is given below. i) Calculate the need matrix. ii) Check whether the system is safe or not? If safe, what is the safe sequence? iii) Calculate the total sum of each type of resource?										(5M) (CO3, L2,L3)
			Allocation		Max			Available			
	Processes	А	В	C	A	В	C	A	В	C	
	P0	1	1	2	4	3	3	2	1	0	
	P1	2	1	2	3	2	2				
	P2	4	0	1	9	0	2				
	P3	0	2	0	7	5	3				
	P4	1	1	2	1	1	2				
				Τa	able Q.1A						
1B.	Describe how the Swap() instruction can be used to provide mutual exclusion that satisfies the bounded waiting requirement.									sfies the	(3M) (CO2, L2)
1C.										(2M)	
	Process P_1 by the CPU. Describe the action taken by a kernel to context-switch between the processes with a diagram.									veen the	(CO1, L2)
2A.											(5M)
	Consider five memory partitions of size 100 KB, 500 KB, 200 KB, 450 KB and 600 KB in same order. If sequence of requests for blocks of size 212 KB, 417 KB, 112 KB and 426 KB in same									(CO4, L2,L3)	
	order come, Apply First fit, worst fit and best fit algorithms for memory allocations. Find the optimal algorithm for memory allocation and justify.									,,	

2B.	i.		e roles of Lazy			(3M)				
	ii.				e turnaround time for non-preemptive	(CO4, CO3)(L2,L3)				
	SJF and preemptive SJF with the help of a Gannt Chart for the following data.									
		Γ	Process	Arrival Time (msec)	Burst Time(msec)					
		-	P1	0	8					
		-	P2	4	5					
		-	P3	3	2					
		-	P4	2	1					
		Table Q.2B								
• 0	Explain the microkernel operating system structure with diagram, benefits, and detriments.									
2C.	Explain the	(2M) (CO1, L2)								
24	Apply FIFO, LRU and optimal page replacement algorithms for the following page reference									
3 A		• • •	(5M)							
					2,0,1,7,0,1. Assume 3 frames and all faults for each algorithm	(CO4,L3)				
3 B	frames are initially empty. Calculate the number of page faults for each algorithm.Explain the handling of a user application invoking the open () system call with a neat diagram									
30	-		(3M) (CO1,L2)							
	and state th	and state the purpose of medium-term scheduler with neat diagram.								
3 C	Explain in detail about threading and its models with neat diagram. Explain the challenges in									
	multicore	program	ming.							
4 A	Explain in detail about page table structure and its variation with suitable example. Define									
	fragmentat	(5M) (CO4,L2)								
	_	_	(3M)							
4B		Let the page fault service time be 10ms in a computer with average memory access time bein								
	20ns. If one page fault is generated for every 10 ⁶ memory accesses, what is the effective access									
	time for the memory? List steps involved in page fault service.									
4 C	Explain sequential and direct access methods of a file with examples.									
5A	Assume th	999. Cylinder 143 is currently serving	(5M)							
		by drive, and the cylinder 125 was a previous request. The 86, 1470, 913, 1774, 948, 1509, 102								
	1750, 130	isk-scheduling algorithms from FCFS,	(CO5,L3)							
	SSTF, SCAN, C-SCAN and C-LOOK, those uses minimum distance to satisfy all the pending									
	requests. J									
5B	Explain the any three ways of implementing the access matrix.									
	1 J									
5 C	Discuss the	Discuss the strengths and weaknesses of implementing an access matric using capabilities								
	are associated with domains.									
	are associated with domains.									